

Nucleon Spin Structure from Confinement to Asymptotic Freedom

K. Griffioen College of William & Mary

griff@physics.wm.edu

5th International Conference on Quarks in Nuclear Physics IHEP Beijing 21 September 2009

QNP09 Beijing

INTRODUCTION

The nucleon structure functions F_1 , F_2 , g_1 and g₂ depend on two Lorentz invariants. Although well-defined over all kinematics, their interpretation varies with momentumtransfer scale. They have been actively measured over several decades at a number of labs around the world.

The College of — WILLIAM & MARY

Inelastic Scattering

Lorentz invariants:

$$\begin{split} \nu &= p \cdot q / M = (E - E')_{\text{lab}} \\ Q^2 &= -q \cdot q = (4EE' \sin^2 \frac{\theta}{2})_{\text{lab}} \\ x &= -q \cdot q / 2p \cdot q = (Q^2 / 2M\nu)_{\text{lab}} \\ y &= p \cdot q / p \cdot k = (\nu / E)_{\text{lab}} \\ W^2 &= (p + q)^2 = (M^2 + 2M\nu - Q^2)_{\text{lab}} \\ s &= (k + p)^2 = (2EM + M^2)_{\text{lab}} \end{split}$$

Unpolarized Cross Section:

$$\frac{d^2\sigma}{dxdQ^2} = \frac{8\pi\alpha^2 y}{Q^4} \left[\frac{y}{2}F_1 + \frac{\xi}{2xy}F_2\right]$$

Polarized Cross Section:

$$\frac{d^2\Delta\sigma}{dxdQ^2} = \frac{8\pi\alpha^2 y}{Q^4} \left[\cos\alpha\left\{\left(\xi + \frac{y}{2}\right)g_1 - \frac{\gamma y}{2}g_2\right\} - \sin\alpha\cos\phi\left\{\frac{y}{2}g_1 + g_2\right\}\right]$$

$$\begin{split} &\alpha = \text{polar angle of target spin wrt the beam axis} \\ &\phi = \text{azimuthal spin angle wrt the scattering plane} \\ &\alpha = 0^\circ \text{ (longitudinal); } \alpha = 90^\circ, \phi = 0^\circ \text{ (transverse).} \\ &\gamma^2 = 4M^2x^2/Q^2 = Q^2/\nu^2 \\ &\xi = 1-y - \gamma y^2/4 \end{split}$$

Parton Model: $$\begin{split} &F_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 (q^{\uparrow}(x) + q^{\downarrow}(x) + \bar{q}^{\uparrow}(x) + \bar{q}^{\downarrow}(x)) \\ &F_2(x,Q^2) = 2x F_1(x,Q^2) \\ &g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 (q^{\uparrow}(x) - q^{\downarrow}(x) + \bar{q}^{\uparrow}(x) - \bar{q}^{\downarrow}(x)) \end{split}$$

21 September 2009

The College of —

WILLIAM & MARY

 $F_2^{p}(x,Q^2)$ and $g_1^{p}(x,Q^2)$

Integrals over x

Gottfried Sum Rule

0.235(26) at Q²=4 GeV²

$$\begin{split} \Phi_1^{p,n}(Q^2) &= \int_0^1 F_1^{p,n}(x,Q^2) dx \\ F_1(x) &= \frac{1}{2} \sum_i e_i^2 q_i(x) \\ \Phi_1^p - \Phi_1^n &= \frac{1}{6} [u_v - d_v + 2\bar{u} - 2\bar{d}] \end{split}$$

Bjorken Sum Rule

0.176(7) at Q²=5 GeV²

Complicating Factor

$$\begin{split} \Gamma_{1}^{p,n}(Q^{2}) &= \int_{0}^{1} g_{1}^{p,n}(x,Q^{2}) dx \\ g_{1}(x) &= \frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x) \\ \Gamma_{1}^{p} - \Gamma_{1}^{n} &= \frac{1}{6} [\Delta u_{v} - \Delta d_{v} + 2\Delta \bar{u} - 2\Delta \bar{d}] \\ \text{or} \\ \Delta C_{NS}^{\bar{M}S} &= 1 - \frac{\alpha_{S}}{\pi} - 3.583 \left(\frac{\alpha_{S}}{\pi}\right)^{2} - 20.215 \left(\frac{\alpha_{S}}{\pi}\right)^{3} + ... \end{split}$$

Regions of Q²

The College of — WILLIAM & MARY

- Infinite Q² Parton Model, PDF(x)
- Large Q² DIS, pQCD, PDF(x,log(Q²))
- Medium Q² Higher twist, target mass correct.
- Low Q² Resonances (complexity)
- Tiny Q² Chiral perturbation theory
- Zero Q²
 Real photons
- Complexity, as measured by $\gamma_0,\,\delta_{\text{LT}},\,d_2\,\text{and}\,\,\Gamma_{1,}$ disappears rapidly at high and low Q^2

The Major Spin Contributors

• CERN

The College of

WILLIAM & MARY

- EMC, SMC, COMPASS
- SLAC
 - E80, E130, E142, E143, E154, E155
- DESY
 - HERMES
- Jefferson Lab
 - Hall A, Hall B (CLAS), Hall C
- Brookhaven National Lab (RHIC)
 STAR, PHENIX

EXPERIMENTS

Jefferson Lab's Hall B (CLAS) is one of the current experiments that is significantly improving our knowledge of g_1 in the range $0.01 < Q^2 < 3.5 \text{ GeV}^2$, where perturbative QCD breaks down.

The College of –

Spin Structure with CLAS

 Long-standing program in Hall-B at JLab to measure longitudinal double spin asymmetries A_{||} on ¹⁵NH₃ and ¹⁵ND₃

WILLIAM & MARY

- EG1: 0.05<Q²<3.5 GeV²
 data (2001); anal (2008)
- EG4: 0.01<Q²<1 GeV²
 data (2006); anal (2009)
- EG1-DVCS: 1<Q²<3.5
 data (2009); anal (2010)
- EG12: 0.5<Q²<7 GeV²
 data (2012?); anal (2014)

Kinematics

EG1-DVCS (red)

- Overlapping colors correspond to different beam energies
- CLAS measures a large range in x at each fixed Q²
- Different E_{beam} for fixed (x,Q²) allows separation of $A_1 \& A_2$

Formalism

$$A_{\parallel} = \frac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow} + \sigma^{\uparrow\uparrow}}$$

$$A_{\parallel} = D(A_1 + \eta A_2)$$

We can extract A_1 using a model for A_2 (small), or g_1 using a model for g_2 (small)

We can extract A₁ and A₂ from A_{||} at multiple values of $\eta(E_{beam})$

$$A_{1} = \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}}$$
$$= \frac{g_{1}(x, Q^{2}) - \gamma^{2}g_{2}(x, Q^{2})}{F_{1}(x, Q^{2})}$$
$$\frac{2\sigma_{TT}}{r_{T}}$$

$$A_2 = \frac{2\sigma_{LT}}{\sigma_{1/2}^T + \sigma_{3/2}^T}$$

$$= \frac{\gamma [g_1(x,Q^2) + g_2(x,Q^2)]}{F_1(x,Q^2)}$$

$g_1^{p}(x,Q^2)$ before CLAS

21 September 2009

The College of —— WILLIAM & MARY

$g_1^{p}(x,Q^2)$ with JLab CLAS

EG1b g1^p

The College of — WILLIAM & MARY

EG1b g₁^d

A_1

The virtual photon asymmetry A_1 (approximately g_1/F_1) should scale with Q^2 if g_1 and F_1 evolve identically. It is very sensitive to resonance structure at moderate Q^2 and to PDFs at high x.

EG1b g_1^{p}/F_1^{p} vs. Q^2

Scaling st	arts at:
X	Q ²
0.085	0.1
0.125	0.2
0.175	0.3
0.250	0.6
0.350	0.8
0.500	1.0

21 September 2009

QNP09 Beijing

10²

10²

10²

10²

10

10

10

10

Modeling the Resonance Region

- Resonances induce huge variations in A₁ compared to the smooth deep-inelastic behavior (red)
- The world's collected wisdom on resonance
 D₁₃ structure, encoded in MAID (green) does not describe the data well

²¹ September 2009

The College of — WILLIAM & MARY

A₁ Data from EG1

Close and Melnitchouk, PRC 68, 035210 (2003)

Isgur, PRD 59, 034013 (2003)

QNP09 Beijing

WILLIAM & MARY Quark polarization in the valence limit

$$A_1(x,Q^2) = \frac{\sum e_i^2 \Delta q_i(x,Q^2)}{\sum e_i^2 q_i(x,Q^2)}$$

Simulated Data for EG12 Extracted from A_1^p , A_1^d and d/u

Moments

Accurate moments of structure functions (xweighted integrals) can now be constructed from experimental data over a wide range of Q². These directly show the changing landscape with momentum transfer, and are often easier to compare with theoretical calculations.

The College of — _____ WILLIAM & MARY

EG1b Γ^p_{1,3,5}

The College of — WILLIAM & MARY

EG1b Γ_1^{d}

Higher Twist

The Operator Product Expansion of QCD sorts quark-gluon correlations into higher twists, which fall off inversely with powers of Q^2 . Measurements at intermediate Q^2 have been able to extract these higher-twist coefficients d_2 and f_2 and the related color electric and magnetic susceptibilities.

The College of -----

WILLIAM & MARY

Bjorken Sum & Higher Twist

Theorv

Burkert

-loffe

 $Q^2(GeV^2)$

Higher Twist d₂

$$d_2(Q^2) = \int_0^1 dx \, x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)]$$

CLAS EG1 (proton) Osipenko, PRD71(05)054007 Model-dependent determination

1

Hall A (neutron) E94-010 Amarian, PRL92(04)022301

21 September 2009

QNP09 Beijing

The College of -

WILLIAM & MARY

Nachtmann Moments

$$M_{1}(Q^{2}) = \int_{0}^{1} dx \frac{\xi^{2}}{x^{2}} \left\{ g_{1}(x, Q^{2}) \left(\frac{x}{\xi} - \frac{1}{9} \frac{M^{2} x \xi}{Q^{2}} \right) \right. \\ \left. - g_{2}(x, Q^{2}) \frac{4}{3} \frac{M^{2} x^{2}}{Q^{2}} \right\}, \\ \xi = 2x/(1 + \sqrt{1 + 4M^{2} x^{2}/Q^{2}}) \\ M_{1}(Q^{2}) = \mu_{2}(Q^{2}) + \frac{\mu_{4}(Q^{2})}{Q^{2}} + \frac{\mu_{6}(Q^{2})}{Q^{4}} + \cdots \\ \mu_{4}(Q^{2}) = 4f_{2}(Q^{2})/9M^{2} \\ f_{2} = 0.039 \pm 0.022(\text{stat}) \pm \frac{0.000}{0.018}(\text{sys}) \\ \pm 0.030(\text{low } x) \pm \frac{0.007}{0.011}(\alpha_{s}), \\ d_{2}(Q^{2}) = \int_{0}^{1} dx \, x^{2} [2g_{1}(x, Q^{2}) + 3g_{2}(x, Q^{2})] \\ \chi_{E} = \frac{2}{3}(2d_{2} + f_{2}) \\ \chi_{B} = \frac{1}{3}(4d_{2} - f_{2}) \end{cases}$$

CLAS, Osipenko PLB609(05)259

$$\chi_E = 0.026 \pm 0.015(\text{stat}) \pm {}^{0.021}_{0.024}(\text{sys}),$$

$$\chi_B = -0.013 \mp 0.007(\text{stat}) \mp {}^{0.010}_{0.012}(\text{sys})$$

21 September 2009

WILLIAM & MARY Higher Twist from g₁ in CLAS

$$\left[\frac{g_1(x,Q^2)}{F_1(x,Q^2)}\right]_{\exp} F_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{LT} + h^{g_1}(x)/Q^2$$

$$1 < Q^2 < 5 \,\,{
m GeV}^2, \quad 2 < W < 3.5 \,\,{
m GeV}$$
 $\int_0^1 dx h^{g_1}(x) = rac{4}{9} M^2 (d_2 + f_2)$

•F₁ from NMC fit to F₂ and 1998 SLAC fit to R
•g₁ (leading twist) from NLO fit at high Q²
•h from fit to all data, especially CLAS in the pre-asymptotic region
•d₂: twist-3, f₂: twist-4

Leader, Sidorov, Stamenov, EPJST162(08)19

- Osipenko, CLAS, proton, PLB609(05)249 $-f_2 = 0.039(39)$ $\chi_E = 0.026(27)$ $\chi_B = -0.013(13)$
- E94-010, Hall A, neutron $-f_2 = 0.034(43)$ $\chi_E = 0.033(29)$ $\chi_B = -0.001(16)$
- Deur, CLAS, Bjorken (p-n) $-f_2 = -0.101(74)$ $\chi_E = -0.077(50)$ $\chi_B = 0.024(28)$
- More accurate determinations are needed.

Duality

When structure functions are averaged over resonance peaks and valleys, they behave just like deep-inelastic scattering extrapolated into the resonance region. Local duality (one resonance region) and global duality (all resonances) tend to hold to 10% above $Q^2=2$ GeV², except for the polarized Δ resonance.

The College of —— WILLIAM & MARY

Duality

Hall C PRL85(00)1182 Global duality to 10% Local duality to 10% W=1.232, 1.535, 1.680 GeV

Duality - structure functions averaged over resonances behave according to DIS systematics <u>Global</u> - all resonances Local - one resonance

The College of —— WILLIAM & MARY

Polarized Duality

Hall C RSS, Wesselmann, Slifer Q²=1.379 GeV² **Target Mass Corrections** applied to PDFs No duality for Δ PRL98(07)132003 $\mathbf{g}_1^{\mathbf{p}}$ <u>GRSV</u>: Phys. Rev. D 53, (1996) 4775

BSB : Eur. Phys. J. C 41, (2005) 327

AAC : Phys. Rev. D 62, (2000) 034017.

Duality at CLAS (EG1)

Deuteron

Proton

The structure function g_2 in pQCD can be expressed as a convolution of g_1 . Deviations from this Wandzura-Wilczek form measures higher twist. The Burkhardt-Cottingham sum rule states that the first moment of g_2 is zero. Precise data are now available to evaluate this claim.

QNP09 Beijing

RSS g_2^p

Wandzura-Wilczek

$$g_{2}^{WW} = -g_{1} + \int_{x}^{1} \frac{g_{1}}{y} dy$$

Q²=1.28 GeV² $g_{2} = g_{2}^{WW} + g_{2}^{WW}$

Burkhardt-Cottingham Sum Rule $\prod_{2} = \int_{0}^{1} g_{2}(x,Q^{2}) dx = 0$

2 Hall C: Slifer et al. arXiv:0812.0031

WILLIAM & MARY Burkhardt Cottingham Sum

- Plot: K. Slifer
- Open points: Measured
- Solid points: Corrected for unmeasured regions and elastic contribution
- Green: Hall A E97-110
- Blue: Hall A E01-012
- Red: Hall C RSS
- Black: Hall A E94-010
- Brown: SLAC E155

Burkhardt & Cottingham, Ann. Phys. **56**(70)453

$$\int_{0}^{1} g_2(x, Q^2) dx = 0$$

Spin Polarizabilities

The spin polarizability can be expressed in terms of moments of g_1 and g_2 . How this evolves at low Q² from the real photon point provides a rigorous test of chiral perturbation theory.

The College of WILLIAM & MARY

EG1b γ_0^p

ILLIAM & MARY

EG1b γ_0^d

 $\gamma_0{}^{p\text{-n}}$ and $\gamma_0{}^{p\text{+n}}$

A Deur CLAS + Hall A

For isovector (p-n) case Δ contribution cancels

21 September 2009

QNP09 Beijing

The GDH Sum Rule

At low Q^2 , the evolution of the first moment of g_1 should be proportional to Q^2 and to the square of the anomalous magnetic moment of the nucleon. Data are now available to test this.

Global Properties

Energy-Weighted Sum Rule

$$S(F) = \sum_{a} (E_a - E_0) |< a|F|0 > |^2 = <0|[F, [H, F]|0 >$$

GDH Sum Rule

$$\int_{k_{\pi}}^{\infty} \frac{dk}{k} \Delta \sigma^{\gamma N}(k) = \frac{2\pi^2 \alpha \kappa^2}{M^2}$$
$$\Delta \sigma^{\gamma N} = \sigma_{3/2}^{\gamma N} - \sigma_{1/2}^{\gamma N}$$

Sum over excited states is tied to property of ground state

The College of — WILLIAM & MARY

CLAS Moments $\Gamma_1^{p,d}$

The College of — WILLIAM & MARY

EG4 Γ_1^p Expected

21 September 2009

The Spin Crisis

Where does the spin of the nucleon come from? Only a quarter comes from the quark spins. The rest must be gluon polarization and orbital angular momentum; both of these are hard to measure. However, data are becoming available that suggest the gluon polarization is small.

Could be constrained by QCD evolution but this requires an understanding of higher twist at moderate Q². Direct measures through photon- Tr gluon fusion and pp de reactions. ar

Known

Transverse momentum dependent distributions and generalized parton distributions are sensitive to quark orbital angular momentum

 $\Delta\Sigma$

 $+\Delta G + L_{z}$

Δg

Photon-gluon fusion measurements show a relatively small polarized gluon distribution.

The College of ——— WILLIAM & MARY

PDFs and CLAS

- Error envelopes for PDFs from LSS05 global analysis (green)
- CLAS EG1 data significantly improve errors on Δu , Δd , Δx and ΔG (blue)
- CLAS EG12 (12 GeV upgrade) will especially improve ΔG (red)

NLO Fits to A₁

DeFlorian, Sassot, Stratmann & Vogelsang (DSSV) PRD80(09)034030

QNP09 Beijing

Polarized PDFs

Double polarized pp scattering occurs through qq, qg or gg scattering. Later two are sensitive to Δg

DSSV PDFs

x range in Eq. (35)	Q^2 [GeV ²]	$\Delta u + \Delta \bar{u}$	$\Delta d + \Delta ar{d}$	$\Delta \bar{u}$	$\Delta ar{d}$	$\Delta \bar{s}$	Δg	$\Delta\Sigma$
0.001–1.0	1	0.809	-0.417	0.034	-0.089	-0.006	-0.118	0.381
	4	0.798	-0.417	0.030	-0.090	-0.006	-0.035	0.369
	10	0.793	-0.416	0.028	-0.089	-0.006	0.013	0.366
	100	0.785	-0.412	0.026	-0.088	-0.005	0.117	0.363
0.0–1.0	1	0.817	-0.453	0.037	-0.112	-0.055	-0.118	0.255
	4	0.814	-0.456	0.036	-0.114	-0.056	-0.096	0.245
	10	0.813	-0.458	0.036	-0.115	-0.057	-0.084	0.242
	100	0.812	-0.459	0.036	-0.116	-0.058	-0.058	0.238

- Significant contributions from x<0.001
- ΔG vanishes with increasing Q^2
- $1/2 = (1/2)\Delta\Sigma + \Delta G + L_z$ implies:
- At $Q^2=4$ GeV², $L_z = 0.474$ (large)
- Errors on ΔG are still very large

The College of **WILLIAM** & **MARY**

Orbital Angular Momentum

Plot: Voutier, arXiv:0802.2499 [27] Mazouz et al., PRL**99**(07)2425 [26] Airapetian et al., arXiv:0802.2499

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L_q + L_g$$
$$J_q = L_q + \frac{1}{2}\Delta\Sigma_q$$
$$J_g = L_g + \Delta g$$
$$J_q(x) = \frac{1}{2}x[q(x) + E_q(x)]$$

OAM accessed through GPDs via deeply virtual Compton scattering

HYPERFINE

The 21 cm line in hydrogen (ground-state hyperfine splitting) has been measured to 13 digits of accuracy. Theoretical calculations are limited to parts per million because of the nuclear physics that depends on g_1 and g_2 . Recent data improves this calculation.

The College of _____ Hydrogen Hyperfine Splitting LLIAM & MARY Carlson, Nazaryan, Griffioen, PRA78(08)022517 $E_{\rm HFS}(e^-p) = 1.4204057517667(9) \,{\rm GHz} = (1 + \Delta_{QED} + \Delta_{R}^{p} + \Delta_{S}) E_{F}^{p}$ $\Delta_S = \Delta_Z + \Delta_{\text{pol}} \qquad \delta_Z^{\text{rad}} = \frac{\alpha}{3\pi} \left[2 \ln \frac{\Lambda^2}{m^2} - \frac{4111}{420}\right]$ Triplet Unperturbed Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{rad})$ ΔE $\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left| G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} - 1 \right|$ Singlet $\Delta_{S} = -38.62(16) \text{ ppm } \Delta_{Z} = -41.0(5) \text{ ppm}$ $\Delta_{\rm pol} = 2.38(58) \, \rm ppm$ $\Delta_{\text{pol}} = \frac{\alpha m_e}{2\pi (1+\kappa)M} (\Delta_1 + \Delta_2) = (0.2264798 \text{ ppm})(\Delta_1 + \Delta_2)$ $\tau = \nu^2/Q^2$ $B_1 = \int_0^{x_{\rm th}} dx \,\beta(\tau) g_1(x,Q^2) \,,$ $\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{8m_p^2}{Q^2} B_1(Q^2) \right\} = 8.85(278) \qquad \begin{array}{c} J_0 \\ B_2 = \int_0^{x_{\rm th}} dx \, \beta_2(\tau) g_2(x,Q^2) \, , \end{array}$ $\Delta_2 = -24m_p^2 \int_0^\infty \frac{dQ^2}{Q^4} B_2(Q^2). = -0.57(57)$ $\beta(\tau) = \frac{4}{6} \left(-3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \right)$ Δ_{pol} = 1.88(64) ppm from CLAS $\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)},$

21 September 2009

QNP09 Beijing

COMMENSURATE SCALING

The QCD is scale-independent BOTH at high Q^2 and low Q^2 . By defining an effective coupling constant consistent with the form from NLO pQCD, the relationship of these constants can be calculated.

Commensurate Scaling

Brodsky, Lu, PRD51(95)3652; Deur, PLB650(07)244

CONCLUSIONS

Although much is known, there is still much to be learned about nucleon spin that will keep us busy for at least another decade.

The College of —— WILLIAM & MARY

- What's still missing:
 - high x: A₁^{p,d} for polarized PDFs (CLAS12)
 - g₂^p (transverse target); SANE (Hall C) covers Q²>1 GeV²; nobody's measuring Q²<1 GeV²
 - low Q^2 evolution of $g_1^{p,d}$ (EG4)
 - gluon spin: evolution for 1< Q²<10 (CLAS12); direct measurements?</p>
 - orbital angular momentum (GPD experiments)
- What's gained:
 - understanding three regions
 - Q² near 0 (χPT)
 - Q² from 0.1-10 GeV² (TMC, higher twists, resonances, the transition)
 - Q² near infinity (pQCD)