

Measurements of Quark Momenta in 3 Dimensions

Keith Griffioen Helmholtz Institute Mainz College of William & Mary

griff@physics.wm.edu

Institutsseminar Kernphysik Mainz, 14 November 2011

14 November 2011

Most of what we know about the world comes from scattering experiments. The qualities of light give very different pictures of the same object.

Rouen Cathedral, Claude Monet, ~1893

eN Scattering

- The only thing we can measure is a cross section.
- But by separating kinematics from nucleon structure, we can identify robust, experimentally determined objects, the structure functions:

$$\frac{d\sigma}{dx\,dy\,d\psi} = \frac{2\alpha^2}{xyQ^2} \frac{y^2}{2\left(1-\varepsilon\right)} \left\{ F_T + \varepsilon F_L + S_{\parallel}\lambda_e \sqrt{1-\varepsilon^2} 2x(g_1 - \gamma^2 g_2) \right\}$$
$$- |S_{\perp}|\lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S 2x\gamma(g_1 + g_2) \right\}$$

- Thus, F_T , F_L , g_1 , $g_2(x,Q^2)$ can be extracted for all x, Q^2 .
- Experiment tells us where these can be interpreted in terms of parton distribution functions (PDFs) in pQCD and where complications show up.
- PDFs are known only through model fitting of structure functions.
- The same holds for transverse momentum dependent distributions (TMDs) and generalized parton distributions (GPDs)

P. M

 $q \cdot q = -Q^2$

 $p \cdot q/M = v$

 $(k+p)^2 = s$

 $E_h/v = z$

 $(p+q)^2 = W^2$

 $-q \cdot q/(2p \cdot q) = x$

 $p \cdot q/p \cdot k = y = (v/E)_{lab}$

Lorentz invariants:

Structure Functions

- Structure functions have a simple interpretation in the parton model
- Realistically, we measure convolutions of PDFs that are extracted through NLO QCD analyses

Parton Model: $F_1(x, Q^2) = \frac{1}{2} \sum_i e_i^2 (q^{\uparrow}(x) + q^{\downarrow}(x) + \bar{q}^{\uparrow}(x) + \bar{q}^{\downarrow}(x))$ $F_2(x, Q^2) = 2x F_1(x, Q^2)$ $g_1(x, Q^2) = \frac{1}{2} \sum_i e_i^2 (q^{\uparrow}(x) - q^{\downarrow}(x) + \bar{q}^{\uparrow}(x) - \bar{q}^{\downarrow}(x))$

 $F_2^{p}(x,Q^2)$ and $g_1^{p}(x,Q^2)$

Fits to all the world's data yield the probability distributions for finding a quark or a gluon with momentum fraction x at scale Q^2 .

Polarized PDFs

DSSV fits

 Q^2 evolution is used to determine Δg

Large uncertainties remain

deFlorian, Sassot, Stratmann, Vogelzang

14 November 2011

DSSV PDFs

		· • •			· -			
x range in Eq. (35)	Q^2 [GeV ²]	$\Delta u + \Delta \bar{u}$	$\Delta d + \Delta ar{d}$	$\Delta \bar{u}$	$\Delta ar{d}$	$\Delta \bar{s}$	Δg	$\Delta\Sigma$
0.001-1.0	1	0.809	-0.417	0.034	-0.089	-0.006	-0.118	0.381
	4	0.798	-0.417	0.030	-0.090	-0.006	-0.035	0.369
	10	0.793	-0.416	0.028	-0.089	-0.006	0.013	0.366
	100	0.785	-0.412	0.026	-0.088	-0.005	0.117	0.363
0.0–1.0	1	0.817	-0.453	0.037	-0.112	-0.055	-0.118	0.255
	4	0.814	-0.456	0.036	-0.114	-0.056	-0.096	0.245
	10	0.813	-0.458	0.036	-0.115	-0.057	-0.084	0.242
	100	0.812	-0.459	0.036	-0.116	-0.058	-0.058	0.238

$$\frac{1}{2} = \frac{\Delta \Sigma}{2} + \Delta G + L_z$$

- Significant contributions from x<0.001
- ΔG vanishes with increasing Q^2
- At Q²=4 GeV², L_z = 0.474 (large)
- Errors on ΔG are still very large

- Any confined quark must have transverse momentum
- Therefore, colinear PDFs cannot give the whole story
- \bullet Transverse momentum is related to L_z
- There has been much recent work trying to understand transverse momentum distributions (TMDs)

- Parton model for electron-quark scattering
- Transverse momentum-dependence at higher twist

$$\begin{aligned} \mathcal{M}_{LL} &= \bar{u}_{L}(p')\gamma_{\mu}u_{L}(p)\bar{u}_{L}(k')\gamma^{\mu}u_{L}(k) \\ &|\mathcal{M}_{LL}|^{2} = |\mathcal{M}_{RR}|^{2} = 4s^{2} \\ &|\mathcal{M}_{LR}|^{2} = |\mathcal{M}_{RL}|^{2} = 4u^{2} \\ &s = (p+k)^{2} = 2p \cdot k \\ &u = (p-k')^{2} \\ &p = (xP, p_{\perp}\cos\varphi, p_{\perp}\sin\varphi, xP) = xP + p_{\perp} \end{aligned}$$

 $y = (E-E')/E \{ fractional energy transfer \} \\ p_{\perp} = quark transverse momentum \\ \phi = azimuthal angle of struck quark \\ \end{cases}$

Azimuthal moment suppressed by 1/Q

k: incident electronk': scattered electronp: incident quarkp': scattered quark

$$\sigma \propto s^{2} + u^{2} \propto (1 - (P_{\perp}/Q)\sqrt{1 - y}\cos\varphi)^{2}$$
$$+ (1 - y)^{2} (1 - (P_{\perp}/Q\sqrt{1 - y})\cos\varphi)^{2}$$
$$\langle \cos \varphi \rangle_{eP} = -\left(\frac{2p_{\perp}}{Q}\right) \frac{(2 - y)\sqrt{1 - y}}{1 + (1 - y)^{2}}$$

$$\langle \cos 2\varphi \rangle_{eP} = \left(\frac{2p_{\perp}^2}{Q^2}\right) \frac{(1-y)}{1+(1-y)^2}$$

14 November 2011

Semi-Inclusive DIS

11

SIDIS Cross Section

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \text{Bacchetta, et al., JHEP 2(2007)093} \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos\phi_h F_{UU}^{\cos\phi_h} \\ &+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{LU}^{\sin\phi_h} \\ &+ \varepsilon \sin(2\phi_h) F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin^2\phi_h} \right] \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin^2\phi_h} \right] \\ &+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{LL}^{\cos\phi_h} \right] \\ &+ \left| S_{\perp} \right| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\ &+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}, \\ \text{November 2011} \\ \text{KPH 2011} \\ \end{aligned}$$

14 November 2011

TMD Structure Functions

Intuitive TMDs

from Bacchetta

Bacchetta, PRD78(08)074010 $f_{u^{\uparrow}/p} (x=0.1)$ $f_{d^{\uparrow}/p} (x=0.1)$ 0 0 0.6 0.3 0.4 0.2 0.2 0.1 py (GeV) $\rho({\rm GeV^{-2}})$ py (GeV) $\rho({\rm GeV^{-2}})$ **Boer-Mulders** 0.0 0.0 -0.1 -0.2 f_1 h_1^\perp -0.4 -0.2 h_{1L}^{\perp} -> g_{1L} -0.3 -0.6 2 6 -0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 f_{1T}^{\perp} h_1, h_{1T}^{\perp} g_{1T} $p_X (GeV)$ p_X (GeV) $\boldsymbol{x} \; \boldsymbol{h}_{\boldsymbol{1}}^{\perp (1)} \left(\boldsymbol{x} \right)$ $\boldsymbol{x} \boldsymbol{h}_{1}^{\perp (1/2)} \left(\boldsymbol{x} \right)$ 0.00 0.00 -0.02 -0.02 down -0.04 -0.04 down -0.06 -0.06 -0.08 -0.08 -0.10 up up -0.10 -0.12 -0.12-0.14 -0.14 0.6 1.0 0.2 0.4 0.8 0.2 0.4 0.6 0.8 1.0 х х

14 November 2011

14 November 2011

Bacchetta, PRD78(08)074010

Bacchetta, PRD78(08)074010

14 November 2011

- Imagine that the qq pair is created in a ³P₀ spin state with vacuum quantum numbers J^{PC}=0⁺⁺
- Quark spins are opposite the orbital ang. mom. L=1
- Pion (with no spin) acquires transverse momentum
- This simple model breaks down if the fragmentation string does not conserve J (i.e. if there are torques)

Function Zoo

Leading Twist TMDs

Sub-Leading Twist TMDs

Leading Twist FFs

Sub-Leading Twist FFs

14 November 2011

Complementarity of pp, ep, ee

 $\frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 f_1^q(x, p_T^2) \otimes f_1^{\bar{q}}(\bar{x}, \bar{p}_T^2)$ $q_{\mathrm{T}} = p_{\mathrm{T}} + \bar{p}_{\mathrm{T}}$

 $\frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)$ $q_T = zp_T + k_T$

$$\begin{array}{l} \begin{array}{l} \left(\mathbf{e}^{+}\mathbf{e}^{-}\operatorname{Annihilation} \right) \ \frac{d\sigma}{dq_{T}^{2}} \sim \sum_{q} e_{q}^{2} \ D_{1}^{q}(z,k_{T}^{2}) \otimes D_{1}^{\bar{q}}(\bar{z},\bar{k}_{T}^{2}) \\ \\ \mathbf{q}_{\mathrm{T}} = \mathbf{k}_{\mathrm{T}} + \bar{\mathbf{k}}_{\mathrm{T}} \end{array} \end{array}$$

Polarized pp Asymmetries

Fig. 1. Inclusive pion production. Two events (a) and (b), symmetric with respect to the $\hat{y}\hat{z}$ plane, are represented. Without polarization, they would have the same probability. In the polarized case, the Collins effect favours the case (a). The arrows labelled q_i represent the momenta of the quarks in the subprocess. The spins are denoted by the arch-like arrows. The Collins effect acts at the last stage, where the quark q_c fragments into the pion carrying momentum **p**. h_{\perp} is the pion's transverse momentum with respect to the quark q_c

Bravar, PRL77(1996)2626 FNAL E704

$$\bar{p}\uparrow + p \rightarrow \pi^-(\pi^+) + X$$

Fig. 5. Single spin asymmetry measured by E704 collaboration for charged pions at $0.2 < p_{\perp} < 2.0$ GeV [6]. The curves are our model results calculated with quark transverse polarizations $\Delta_{\perp} u/u = -\Delta_{\perp} d/d = x^2$ and $\beta = 1$

$$A_N = \frac{1}{P_B \langle \cos \phi \rangle} \frac{N \uparrow -N \downarrow}{N \uparrow +N \downarrow}$$

 ϕ is angle between beam polarization axis and the normal to the production plane Collins effect gives the right trend to explain the large asymmetries seen

14 November 2011

Collins Fragmentation

Seidl, PRD78(08)032011 (Belle)

$$N(\phi_1 + \phi_2) \sim a_{12} \cos(\phi_1 + \phi_2), \ a_{12} \sim H_1^{\perp}(z_1) H_1^{\perp}(z_2)$$
$$A_{12} = a_{12}^{\pi^+, \pi^-} / a_{12}^{(\pi^+, \pi^+), (\pi^-, \pi^-), (\pi^+, \pi^-)}$$

Anselmino, AIPCP1149(09)465 [Fits]

- e⁺e⁻→ππ
- A₁₂: Ratio cancels QCD radiative and acceptance effects
- CM energy ~10.5 GeV; L=550 fb⁻¹

Kinematic Coverage

Transversity+Collins

Worm-Gear TMD

$$F_{LT}^{\cos(\phi_h - \phi_S)} = \mathcal{C} \left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} g_{1T} D_1 \right]$$

	h_1^\perp
g_{1L}	h_{1L}^{\perp}
g_{1T}	$h_1, rac{h_{1T}^\perp}{}$
	g _{1L}

Jin Huang, Hall A, Jefferson Lab, arXiv1108.0489

14 November 2011

Worm-Gear TMD

14 November 2011

Boer-Mulders

Pretzelocity

A1 \approx g1/F1

$$f_{1}^{q}(x, k_{T}) = f_{1}(x) \frac{1}{\pi \mu_{0}^{2}} \exp\left(-\frac{k_{T}^{2}}{\mu_{0}^{2}}\right)$$

$$g_{1}^{q}(x, k_{T}) = g_{1}(x) \frac{1}{\pi \mu_{2}^{2}} \exp\left(-\frac{k_{T}^{2}}{\mu_{2}^{2}}\right)$$

$$g_{1}^{q}(x, k_{T}) = g_{1}(x) \frac{1}{\pi \mu_{2}^{2}} \exp\left(-\frac{k_{T}^{2}}{\mu_{2}^{2}}\right)$$

$$p_{1}^{q}(x, k_{T}) = D_{1}(x) \frac{1}{\pi \mu_{D}^{2}} \exp\left(-\frac{p_{T}^{2}}{\mu_{D}^{2}}\right),$$

$$eg1-dvcs \ data$$

$$P_{T} \ dependence \rightarrow \mu_{0} \neq \mu_{2}$$

$$\bullet \pi^{+} (red)$$

$$\bullet \pi^{-} (blue)$$

$$\bullet \pi^{0} (green)$$

$$f_{1} \ b_{1}^{+} \ b_{1}^{+}$$

Sub-Leading Twist

Cahn and More

Unpolarized SIDIS cosq

- Fuu for charged-hadron SIDIS
- <x>=0.022; <Q²>=750 GeV²; 0.2<y<0.8; 0.2<z<1
- Data fit well to a + b $\cos \varphi$ + c $\cos 2\varphi$
- Both $\langle \cos \varphi \rangle$ and $\langle \cos 2\varphi \rangle \neq 0$ at high Q^2
- $<\cos\phi>$ at leading-order comes from QCD Compton scattering ($\gamma^*q \rightarrow qg$)
- <cos2q> at leading-order comes from photon-gluon fusion ($\gamma^*g \to qq$)
- Non-pert. <cosφ> from LT interference

Drell-Yan

 P_1, P_2 q = Q $Q^2 \equiv M_{I^+I^-}^2$ $s = (P_1 + P_2)^2 \simeq 2P_1P_2$ $x_1 = \frac{Q^2}{2P_1q}, \quad x_2 = \frac{Q^2}{2P_2q}$ $y = \frac{1}{2} \ln \frac{x_1}{x_2}$ $x_F = x_1 - x_2$ $\frac{\sqrt{x_F^2 + 4\tau \pm x_F}}{\sqrt{\tau}e^{\pm y}} = \sqrt{\tau}e^{\pm y}$ 4 momenta of hadrons
4 momenta of virtual gamma quanta
squared invariant mass of the lepton pair

squared energy of colliding hadrons in the center of mass system Bjorken variables of colliding hadrons

rapidity

Feynman variable relation between $x_{1,2}$, x_F and y

Drell-Yan

Arnold, PRD79(09)034005 $\frac{d\sigma}{d^4ad\Omega} = \frac{\alpha_{\rm em}^2}{Ea^2} \{ ((1+\cos^2\theta)F_{UU}^1 + (1-\cos^2\theta)F_{UU}^2 + \sin^2\theta\cos\phi F_{UU}^{\cos\phi} + \sin^2\theta\cos^2\phi F_{UU}^{\cos^2\phi}) \}$ $+ S_{aL}(\sin 2\theta \sin \phi F_{LU}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{LU}^{\sin 2\phi}) + S_{bL}(\sin 2\theta \sin \phi F_{UL}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{UL}^{\sin 2\phi})$ + $|\vec{S}_{aT}|[\sin\phi_a((1+\cos^2\theta)F_{TU}^1+(1-\cos^2\theta)F_{TU}^2+\sin^2\theta\cos\phi F_{TU}^{\cos\phi}+\sin^2\theta\cos^2\phi F_{TU}^{\cos^2\phi})]$ $+\cos\phi_a(\sin2\theta\sin\phi F_{TU}^{\sin\phi}+\sin^2\theta\sin2\phi F_{TU}^{\sin2\phi})]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^1+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^2+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^2+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^2+(1-\cos^2\theta)F_{UT}^2+(1-\cos^2\theta)F_{UT}^2)]+|\vec{S}_{bT}|[\sin\phi_b((1+\cos^2\theta)F_{UT}^2+(1-\cos^2$ + $\sin 2\theta \cos \phi F_{UT}^{\cos \phi}$ + $\sin^2 \theta \cos 2\phi F_{UT}^{\cos 2\phi}$) + $\cos \phi_b (\sin 2\theta \sin \phi F_{UT}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{UT}^{\sin 2\phi})$] $+ S_{aL}S_{bL}((1 + \cos^2\theta)F_{LL}^1 + (1 - \cos^2\theta)F_{LL}^2 + \sin^2\theta\cos\phi F_{LL}^{\cos\phi} + \sin^2\theta\cos2\phi F_{LL}^{\cos2\phi})$ $+ S_{aL} |\vec{S}_{bT}| [\cos\phi_b((1+\cos^2\theta)F_{LT}^1 + (1-\cos^2\theta)F_{LT}^2 + \sin^2\theta\cos\phi F_{LT}^{\cos\phi} + \sin^2\theta\cos^2\phi F_{LT}^{\cos^2\phi})]$ $+\sin\phi_{b}(\sin2\theta\sin\phi F_{LT}^{\sin\phi}+\sin^{2}\theta\sin2\phi F_{LT}^{\sin2\phi})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL}|S_{bL}[\cos\phi_{a}((1+\cos^{2}\theta)F_{TL}^{1}+(1-\cos^{2}\theta)F_{TL}^{2})]+|\vec{S}_{aT}|S_{bL$ $+\sin 2\theta \cos \phi F_{TL}^{\cos \phi} + \sin^2 \theta \cos 2\phi F_{TL}^{\cos 2\phi}) + \sin \phi_a (\sin 2\theta \sin \phi F_{TL}^{\sin \phi} + \sin^2 \theta \sin 2\phi F_{TL}^{\sin 2\phi})]$ $+ |\vec{S}_{aT}||\vec{S}_{bT}|[\cos(\phi_a + \phi_b)((1 + \cos^2\theta)F_{TT}^1 + (1 - \cos^2\theta)F_{TT}^2 + \sin^2\theta\cos\phi F_{TT}^{\cos\phi} + \sin^2\theta\cos2\phi F_{TT}^{\cos2\phi})]$ $+\cos(\phi_a-\phi_b)((1+\cos^2\theta)\bar{F}_{TT}^1+(1-\cos^2\theta)\bar{F}_{TT}^2+\sin^2\theta\cos\phi\bar{F}_{TT}^{\cos\phi}+\sin^2\theta\cos^2\phi\bar{F}_{TT}^{\cos^2\phi})$ $+\sin(\phi_a+\phi_b)(\sin 2\theta\sin\phi F_{TT}^{\sin\phi}+\sin^2\theta\sin 2\phi F_{TT}^{\sin 2\phi})$ + $\sin(\phi_a - \phi_b)(\sin 2\theta \sin \phi \bar{F}_{TT}^{\sin \phi} + \sin^2 \theta \sin 2\phi \bar{F}_{TT}^{\sin 2\phi})$]

What PANDA can measure with a transversely polarized proton target

Drell-Yan

$$F_{UT}^{1} = \mathcal{C}\left[\frac{\vec{h} \cdot \vec{k}_{bT}}{M_{b}}f_{1}\bar{f}_{1T}^{\perp}\right]$$
$$F_{UT}^{\sin(2\phi-\phi_{b})} = -\mathcal{C}\left[\frac{\vec{h} \cdot \vec{k}_{aT}}{M_{a}}h_{1}^{\perp}\bar{h}_{1}\right]$$

$$f_{1T}^{\perp q}(x,k_T)\big|_{DY} = -f_{1T}^{\perp}(x,k_T)\big|_{SIDIS}$$
$$h_{1}^{\perp}(x,k_T)\big|_{DY} = -h_{1}^{\perp}(x,k_T)\big|_{SIDIS}$$

$$F_{UT}^{\sin(2\phi+\phi_b)} = -\mathcal{C}\left[\frac{2(\vec{h}\cdot\vec{k}_{bT})[2(\vec{h}\cdot\vec{k}_{aT})(\vec{h}\cdot\vec{k}_{bT}) - \vec{k}_{aT}\cdot\vec{k}_{bT}] - \vec{k}_{bT}^2(\vec{h}\cdot\vec{k}_{aT})}{2M_a M_b^2}h_1^{\perp}\vec{h}_{1T}\right]$$

$$F_{UT}^{\sin(2\phi-\phi_b)} \equiv -\frac{1}{2}(F_{UT}^{\cos 2\phi} - F_{UT}^{\sin 2\phi})$$

$$F_{UT}^{\sin(2\phi+\phi_b)} \equiv \frac{1}{2} (F_{UT}^{\cos 2\phi} + F_{UT}^{\sin 2\phi})$$

quark pol.ULTU
$$f_1$$
 h_1^{\perp} U f_1 h_1^{\perp} U f_1 g_{1L} h_{1L} h_{1L} T f_{1T}^{\perp} g_{1T} h_1, h_{1T}^{\perp}

$$\begin{aligned} \mathcal{C}[w(\vec{k}_{aT}, \vec{k}_{bT})f_{1}\bar{f}_{2}] &\equiv \frac{1}{N_{c}}\sum_{q}e_{q}^{2}\int d^{2}\vec{k}_{aT}d^{2}\vec{k}_{bT} \\ &\times \delta^{(2)}(\vec{q}_{T} - \vec{k}_{aT} - \vec{k}_{bT})w(\vec{k}_{aT}, \vec{k}_{bT}) \\ &\times [f_{1}^{q}(x_{a}, \vec{k}_{aT}^{2})f_{2}^{\bar{q}}(x_{b}, \vec{k}_{bT}^{2}) \\ &+ f_{1}^{\bar{q}}(x_{a}, \vec{k}_{aT}^{2})f_{2}^{q}(x_{b}, \vec{k}_{bT}^{2})]. \end{aligned}$$

14 November 2011

Dihadron SIDIS

Bacchetta, PR**D69**(2004)074026

$$\begin{aligned} d^{7}\sigma_{OO} &= \frac{\alpha^{2}}{2\pi Q^{2}y} \sum_{a} e_{a}^{2} \left\{ A(y)f_{1}(x)D_{1}(z,\zeta,M_{h}^{2}) - V(y)\cos\phi_{R} \frac{|\vec{k}_{T}|}{Q} \left[\frac{1}{z}f_{1}(x)\vec{D}^{*}(z,\zeta,M_{h}^{2}) + \frac{M}{M_{h}}xh(x)H_{1}^{*}(z,\zeta,M_{h}^{2}) \right] \right\} \\ d^{7}\sigma_{LO} &= \frac{\alpha^{2}}{2\pi Q^{2}y} \lambda \sum_{a} e_{a}^{2}W(y)\sin\phi_{R} \frac{|\vec{k}_{T}|}{Q} \left[\frac{M}{M_{h}}xe(x)H_{1}^{*}(z,\zeta,M_{h}^{2}) + \frac{1}{z}f_{1}(x)\vec{G}^{*}(z,\zeta,M_{h}^{2}) \right] \\ Leading Twist \\ d^{7}\sigma_{OL} &= \frac{\alpha^{2}}{2\pi Q^{2}y} S_{L} \sum_{a} e_{a}^{2}V(y)\sin\phi_{R} \frac{|\vec{k}_{T}|}{Q} \left[\frac{M}{M_{h}}xh_{L}(x)H_{1}^{*}(z,\zeta,M_{h}^{2}) + \frac{1}{z}g_{1}(x)\vec{G}^{*}(z,\zeta,M_{h}^{2}) \right] \\ d^{7}\sigma_{OT} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ B(y)\sin(\phi_{R} + \phi_{S}) \frac{|\vec{k}_{T}|}{M_{h}}h_{1}(x)H_{1}^{*}(z,\zeta,M_{h}^{2}) + \frac{1}{z}g_{1}(x)\vec{G}^{*}(z,\zeta,M_{h}^{2}) \right\} \\ H^{7}\sigma_{OT} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ B(y)\sin(\phi_{R} + \phi_{S}) \frac{|\vec{k}_{T}|}{M_{h}}h_{1}(x)H_{1}^{*}(z,\zeta,M_{h}^{2}) + \frac{1}{z}g_{1}(x)\vec{G}^{*}(z,\zeta,M_{h}^{2}) \right\} \\ H^{7}\sigma_{OT} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ B(y)\sin(\phi_{R} + \phi_{S}) \frac{|\vec{k}_{T}|}{M_{h}}h_{1}(x)H_{1}^{*}(z,\zeta,M_{h}^{2}) + \frac{1}{z}g_{1}(x)\vec{D}^{*}(z,\zeta,M_{h}^{2}) \right\} \\ H^{7}\sigma_{OT} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ B(y)\sin(\phi_{R} + \phi_{S}) \frac{|\vec{k}_{T}|}{M_{h}}h_{1}(x)H_{1}^{*}(z,\zeta,M_{h}^{2}) + \frac{1}{z}g_{1}(x)\vec{D}^{*}(z,\zeta,M_{h}^{2}) \right\} \\ H^{7}\sigma_{OT} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ B(y)\sin(\phi_{R} + \phi_{S}) \frac{|\vec{k}_{T}|}{M_{h}}h_{1}(x)D_{1}(z,\zeta,M_{h}^{2}) - \frac{M}{M_{h}}xg_{T}(x)D_{1}(z,\zeta,M_{h}^{2}) - \frac{M}{M_{h}}xg_{T}(x)D_{1}(z,\zeta,M_{h}^{2}) \right\} \\ d^{7}\sigma_{LT} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ C(y)g_{1}(x)D_{1}(z,\zeta,M_{h}^{2}) - W(y)\cos\phi_{R} \frac{|\vec{k}_{T}|}{Q} \right] \\ d^{7}\sigma_{LL} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ C(y)g_{1}(x)D_{1}(z,\zeta,M_{h}^{2}) - W(y)\cos\phi_{R} \frac{|\vec{k}_{T}|}{Q} \right] \\ d^{7}\sigma_{LL} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ C(y)g_{1}(x)D_{1}(z,\zeta,M_{h}^{2}) - W(y)\cos\phi_{R} \frac{|\vec{k}_{T}|}{Q} \right] \\ d^{7}\sigma_{LL} &= \frac{\alpha^{2}}{2\pi Q^{2}y} |\vec{S}_{\perp}| \sum_{a} e_{a}^{2} \left\{ C(y)g_{1}(x)D_{1}(z,\zeta,M_{h}^{2}) - W(y$$

14 November 2011

Dihadron SIDIS

A_{LU} for $\pi^+\pi^-$ in the CLAS e1f experiment. Analysis by Silvia Pisano (Frascati/Roma Tor Vergata). Clear sin ϕ and sin 2ϕ asymmetries.

14 November 2011

Interference Fragmentation

14 November 2011

EG1-DVCS at JLab

Entries

Mean x

Mean

RMS x

RMS y

1.835

0.2521

0.5571

Refrigerator

Injector

Ena

Stations

 X_R vs Q^2 neutral pion

Mean 3

Mean

RMS x

RMS v

1.825

0.2331

0.5892

14 November 2011

KPH 2011

South LINAC

Beam Switchyard

Separator

14 November 2011

π⁺ (red)
π⁻ (blue)
π⁰ (green)

14 November 2011

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C} \left[-rac{2\left(\hat{oldsymbol{h}} \cdot oldsymbol{k}_T
ight)\left(\hat{oldsymbol{h}} \cdot oldsymbol{p}_T
ight) - oldsymbol{k}_T \cdot oldsymbol{p}_T}{MM_h} h_{1L}^{\perp} H_1^{\perp}
ight]$$

π⁺ (red)
π⁻ (blue)
π⁰ (green)

f_1		h_1^\perp
	g_{1L}	h_{1L}^{\perp}
f_{1T}^{\perp}	g_{1T}	$h_1, \ h_{1T}^\perp$

14 November 2011

π⁺ (red)
π⁻ (blue)
π⁰ (green)

f_1		h_1^\perp
	g_{1L}	h_{1L}^{\perp}
f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

 $F_{UL}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xh_L H_1^{\perp} + \frac{M_h}{M} g_{1L} \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xf_L^{\perp} D_1 - \frac{M_h}{M} h_{1L}^{\perp} \frac{\tilde{H}}{z} \right) \right]$

- π⁺ (red)
 π⁻ (blue)
- π^0 (green)

π⁺ (red)
π⁻ (blue)

• π⁰ (green)

KPH 2011

 h_1^\perp

 h_{1L}^{\perp}

 h_1, h_{1T}^{\perp}

 f_1

 f_{1T}^{\perp}

 g_{1L}

 g_{1T}

- In order to truly understand the nucleon, we will need to explore transverse momentum distributions (TMDs)
- The formalism is complicated and the number of useful objects many
- However, objects like the Collins Fragmentation function show up in many different measurements.
- If these objects prove to be universal, we will have a bright future in the next decade measuring them using eN, NN, and e⁺e⁻ reactions.
- Although TMDs are sensitive to spin-orbit correlations, there is no easy, intuitive way to connect them to L_z.