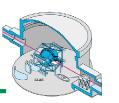


Experimental Moments of Nucleon Structure Functions at Low Q²

K. Griffioen
College of William & Mary
griff@physics.wm.edu

Jefferson Lab Users Meeting 18-20 June 2007

Introduction



Our tendency is to go from inclusive to exclusive reactions

$$f(x,Q^2) \qquad f(x,Q^2,p_\perp)$$

Our tendency is to go from low resolution (Q2) to high

 Σ of constituents resolved constituents

Our tendency is to go from holism to reductionism

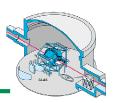
This talk is about going in the other direction:

$$\int f(x,Q^2,p_\perp)dp_\perp \to f(x,Q^2)$$

$$\int f(x,Q^2)dx \to f(Q^2)$$

$$\int f(Q^2)dQ^2 \to \text{hyperfine splitting}$$

Global Properties



Energy-Weighted Sum Rule

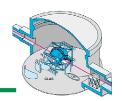
$$S(F) = \sum_{a} (E_a - E_0) |\langle a|F|0 \rangle|^2 = \langle 0|[F, [H, F]|0 \rangle|$$

GDH Sum Rule

$$\int_{k_{\pi}}^{\infty} \frac{dk}{k} \Delta \sigma^{\gamma N}(k) = \frac{2\pi^2 \alpha \kappa^2}{M^2}$$
$$\Delta \sigma^{\gamma N} = \sigma_{3/2}^{\gamma N} - \sigma_{1/2}^{\gamma N}$$

Sum over excited states is tied to property of ground state

High Energy Diversion



Gottfried Sum Rule

$$\Phi_1^{p,n}(Q^2) = \int_0^1 F_1^{p,n}(x,Q^2) dx$$

$$0.235(26)$$
 at $Q^2=4$ GeV²

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 q_i(x)$$

$$\Phi_1^p - \Phi_1^n = \frac{1}{6}[u_v - d_v + 2\bar{u} - 2\bar{d}]$$

Bjorken Sum Rule

$$\Gamma_1^{p,n}(Q^2) = \int_0^1 g_1^{p,n}(x,Q^2) dx$$

$$0.176(7)$$
 at $Q^2=5$ GeV²

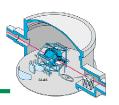
$$g_1(x) = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x)$$

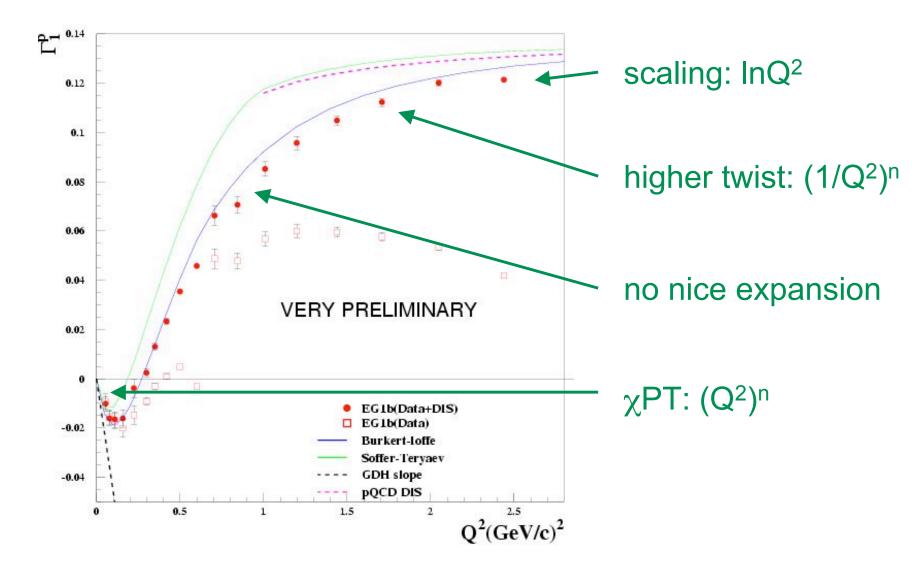
$$\Gamma_1^p - \Gamma_1^n = \frac{1}{6} [\Delta u_v - \Delta d_v + 2\Delta \bar{u} - 2\Delta \bar{d}]$$

Complicating Factor

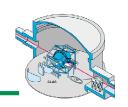
$$\Delta C_{NS}^{ar{MS}} = 1 - rac{lpha_S}{\pi} - 3.583 \left(rac{lpha_S}{\pi}
ight)^2 - 20.215 \left(rac{lpha_S}{\pi}
ight)^3 + ...$$

Regions of Q²

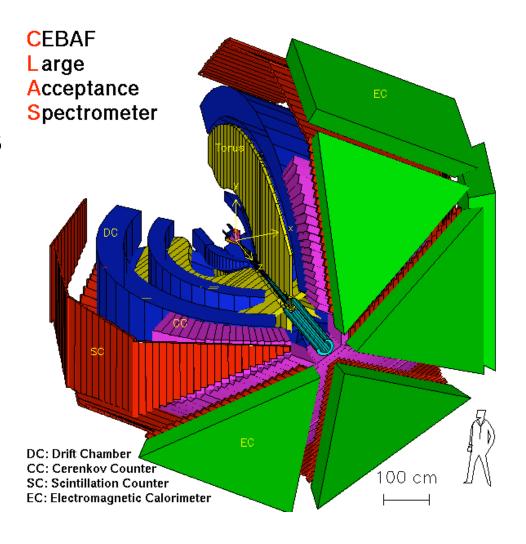




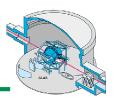
**WILLIAM & MARY Spin Structure with CLAS



- Long-standing program in Hall-B at JLab to measure longitudinal double spin asymmetries A_{II} on $^{15}NH_3$ and $^{15}ND_3$
- EG1: 0.05<Q²<3.5 GeV²
 - data (2001); anal (2007)
- EG4: 0.01<Q²<1 GeV²
 - data (2006); anal (2008)
- EG12: 0.5<Q²<7 GeV²
 - data (2012?); anal (2014)



Formalism



$$A_{\parallel} = rac{\sigma^{\downarrow \uparrow} - \sigma^{\uparrow \uparrow}}{\sigma^{\downarrow \uparrow} + \sigma^{\uparrow \uparrow}}$$

$$A_{\parallel} = D(A_1 + \eta A_2)$$

We can extract A₁ using a model for A₂ (small), or g₁ using a model for g₂ (small)

We can extract A_1 and A_2 from $A_{||}$ at multiple values of $\eta(E_{beam})$

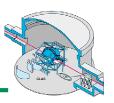
$$A_{1} = \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}}$$

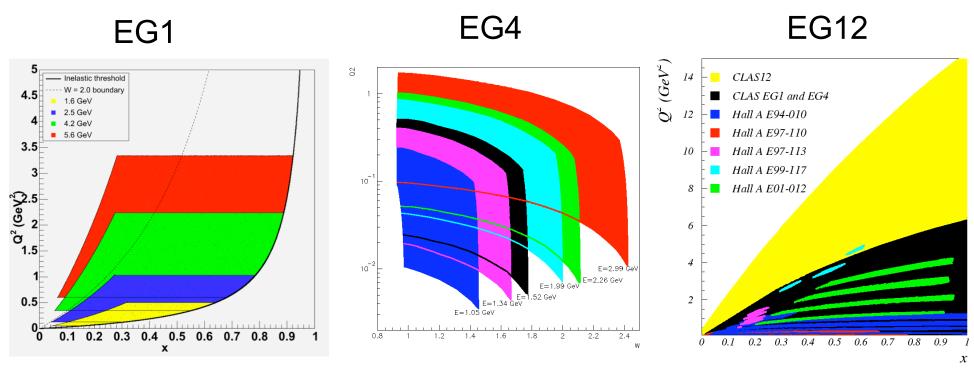
$$= \frac{g_{1}(x, Q^{2}) - \gamma^{2}g_{2}(x, Q^{2})}{F_{1}(x, Q^{2})}$$

$$A_2 = \frac{2\sigma_{LT}}{\sigma_{1/2}^T + \sigma_{3/2}^T}$$

$$= \frac{\gamma [g_1(x,Q^2) + g_2(x,Q^2)]}{F_1(x,Q^2)}$$

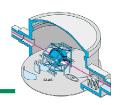
Kinematics



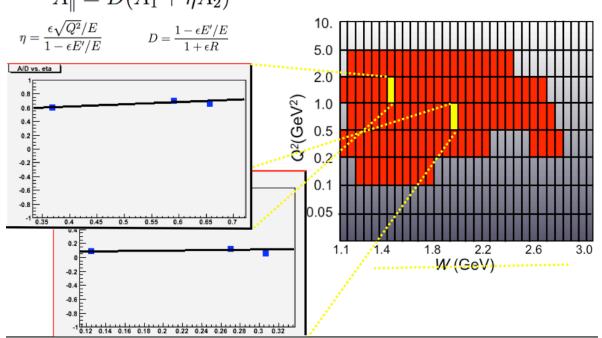


- Overlapping colors correspond to different beam energies
- CLAS measures a large range in x at each fixed Q²
- Different E_{beam} for fixed (x,Q²) allows separation of A₁ & A₂

EG1 Extraction of A₂

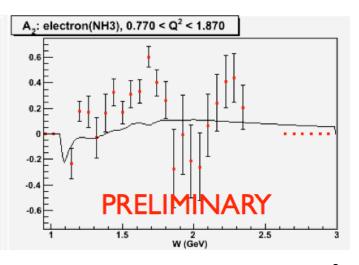


$$A_{\parallel} = D(A_1 + \eta A_2)$$

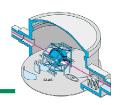


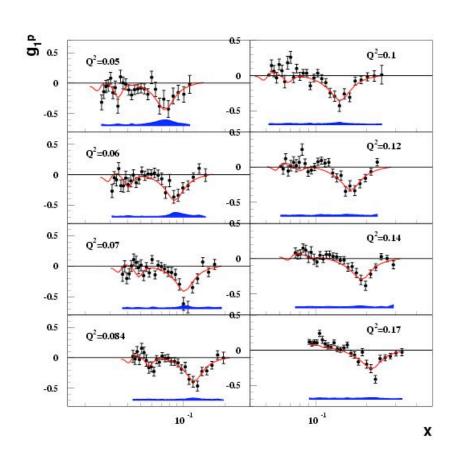
- Analysis is in progress to obtain both A₁ and A₂ from the EG1 data
- Intercept gives A₁
- Slope gives A₂
- A₂ is larger than EG1 model (MAID, AO) as is Hall C RSS experiment

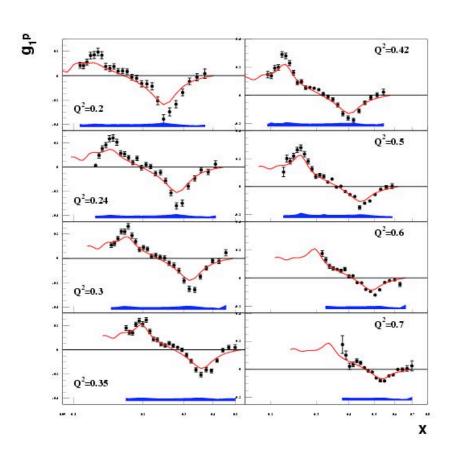




EG1 g_1^p (Q²<0.7)

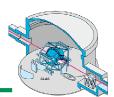






- At low Q² the ∆ resonance drives g₁ negative
- Extensive x-range at fixed Q² allows integration over x
- Red curve is the EG1 model used for radiative corrections

Bjorken Sum & Higher Twist



$$\Gamma_1^{(n)} = \int_0^1 x^n g_1(x, Q^2) dx = \frac{a_n}{2}, \quad n = 0, 2, 4, ...,$$

$$\Gamma_2^{(n)} = \int_0^1 x^n g_2(x, Q^2) dx = \frac{1}{2} \frac{n}{n+1} (d_n - a_n), \quad n = 2, 4, ...,$$

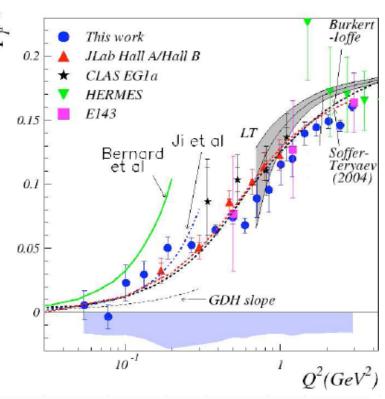
Bjorken Sum Rule:

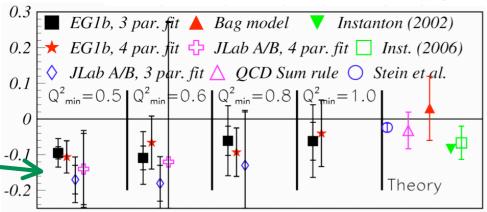
$$\Gamma_1^{p-n} = \frac{g_A}{6} \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi} \right)^2 - 20.21 \left(\frac{\alpha_s}{\pi} \right)^3 \right] + \frac{\mu_4^{p-n}}{Q^2} + \dots$$

$$\mu_4^{p-n} = \frac{M^2}{9} \left(a_2^{p-n} + 4d_2^{p-n} + 4f_2^{p-n} \right)$$

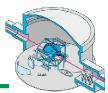
$$d_2^{p-n} = \int_0^1 dx \ x^2 \left(2g_1^{p-n} + 3g_2^{p-n} \right)$$

Fit Γ_1^{p-n} to powers of $1/Q^2$ and extract f_2^{p-n}





Moments $\Gamma_1^{p,d}$



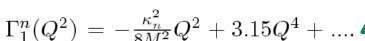
$$\Gamma_1^{p,d}(Q^2) = \int_0^1 g_1^{p,d}(x,Q^2) dx$$
 $\Gamma_1(Q^2) = aQ^2 + bQ^4 + cQ^6 + dQ^8$

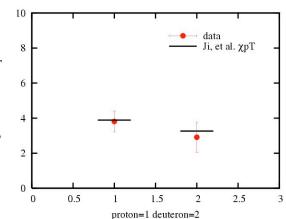
$$\Gamma_1(Q^2) = aQ^2 + bQ^4 + cQ^6 + dQ^8$$

$$\Gamma_1^d(Q^2) = (1 - 1.5\omega_D) \left\{ \Gamma_1^p(Q^2) + \Gamma_1^n(Q^2) \right\}$$

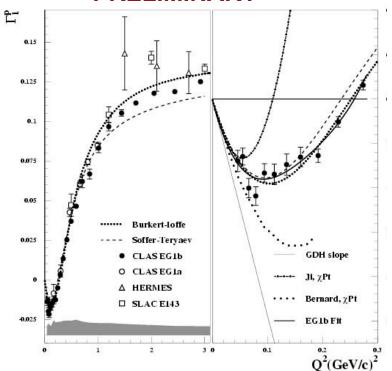
$$\Gamma_1^p(Q^2) = -\frac{\kappa_p^2}{8M^2}Q^2 + 3.89Q^4 + \dots$$

$$GDH + \chi pT$$

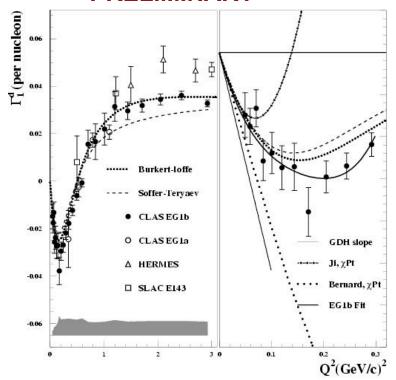




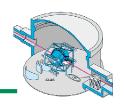
PRELIMINARY

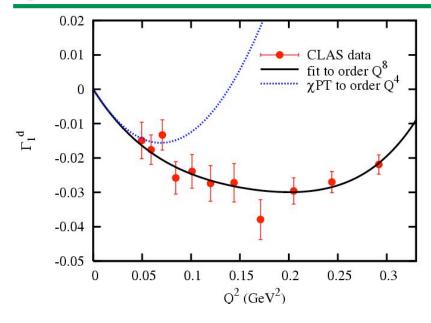


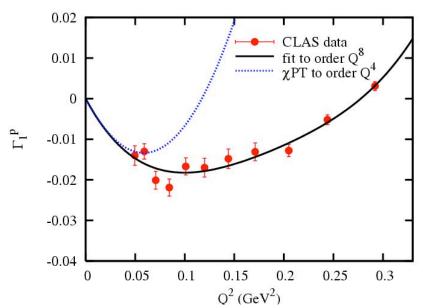
PRELIMINARY

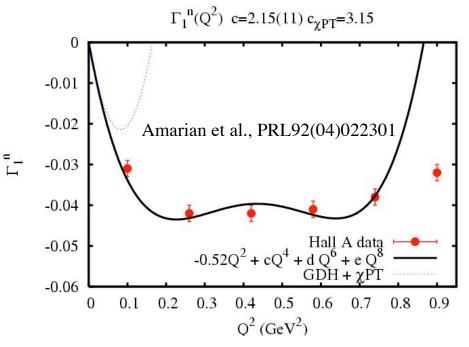


Low Q² Fits of Γ_1



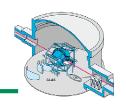




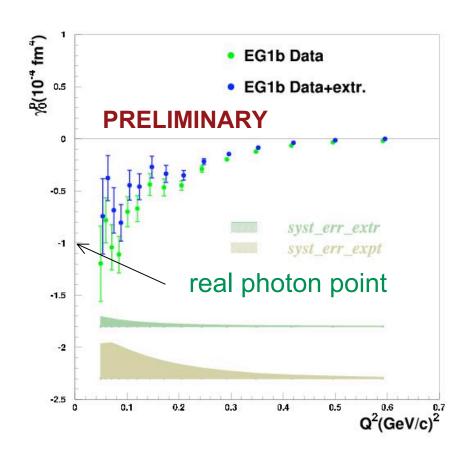


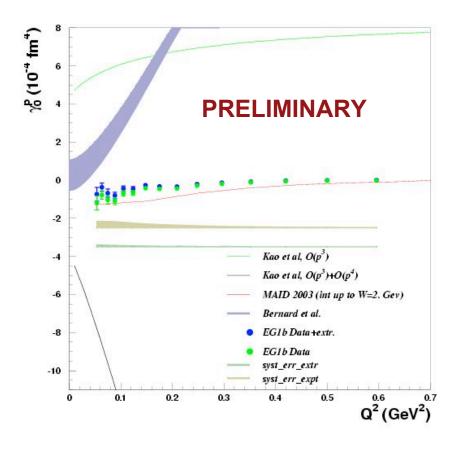
X. D. Ji, C. W. Kao and J. Osborne, Phys. Lett. B **472**, 1 (2000) [arXiv:hep-ph/9910256].

Forward Spin Polarizability

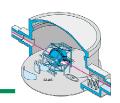


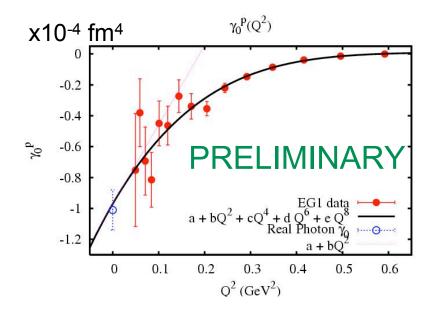
$$\gamma_0(Q^2) = \frac{4e^2M^2}{\pi Q^6} \int_0^{x_0} dx \, x^2 \left\{ g_1(x, Q^2) - \gamma^2 g_2(x, Q^2) \right\}$$





γ_0 Fits at Low Q²

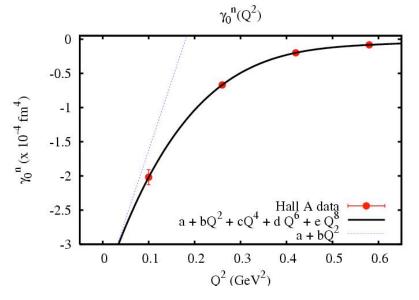




$$a = -0.97(11)$$

 $b = 5.13(94)$

Prok et al., CLAS EG1

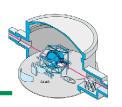


$$a = -3.643(1)$$

 $b = 20.180(8)$

Amarian et al., PRL93(04)152301

Hydrogen Hyperfine Splitting



$$E_{\text{HFS}}(e^-p) = 1.4204057517667(9)\text{GHz} = (1+\Delta_{QED}+\Delta_R^p+\Delta_S)E_F^p$$

$$\Delta_S = \Delta_Z + \Delta_{\text{pol}}$$
 $\delta_Z^{\text{rad}} = \frac{\alpha}{3\pi} \left[2 \ln \frac{\Lambda^2}{m^2} - \frac{4111}{420} \right]$

Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{\rm rad})$

$$\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} - 1 \right]$$

$$\Delta_S = -38.62(16) \text{ ppm } \Delta_Z = -41.0(5) \text{ ppm } \Delta_{pol} = 2.38(58) \text{ ppm}$$

$$\Delta_{\text{pol}} = \frac{\alpha m_e}{2\pi (1+\kappa)M} (\Delta_1 + \Delta_2) = (0.2264798 \text{ ppm})(\Delta_1 + \Delta_2)$$

$$\Delta_{1} = \frac{9}{4} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \left\{ F_{2}^{2}(Q^{2}) + \frac{8m_{p}^{2}}{Q^{2}} B_{1}(Q^{2}) \right\}$$

$$\Delta_{2} = -24m_{p}^{2} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{4}} B_{2}(Q^{2}).$$

$$\tau = \nu^{2}/Q^{2}$$

$$\beta(\tau)$$

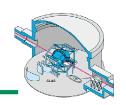
$$B_1 = \int_0^{x_{
m th}} dx \, eta(au) g_1(x, Q^2) \,,$$
 $B_2 = \int_0^{x_{
m th}} dx \, eta_2(au) g_2(x, Q^2) \,,$

$$\beta(\tau) = \frac{4}{9} \left(-3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \right)$$

$$\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)},$$

19 June 2007 JLabUsers 2007 16

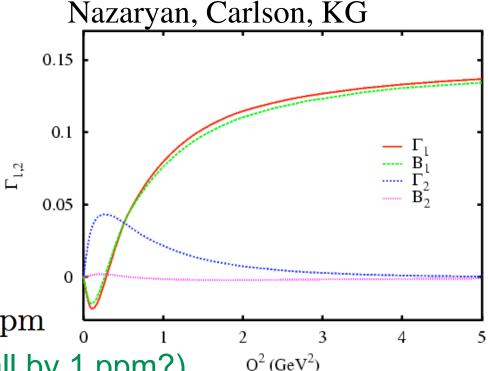
$\Delta_{1,2}$ from $g_{1,2}$



Comparisons between $\Gamma_1 = \int g_1 dx$ and $B_1 = \int \beta_1 g_1 dx$ and between $\Gamma_2 = \int g_2 dx$ and $B_2 = \int \beta_2 g_2 dx$

PRL96,163001

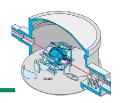
- \blacksquare $B_1 \approx \Gamma_1$
- \blacksquare $B_2 \approx 0$
- Experimentally, errors on Γ_1 are understood; we exploit this fact.
- $\Gamma_2 = \int g_2 dx \neq 0$ at low Q^2 .



 $\Delta_{\rm pol} = (1.3 \pm 0.3) \text{ ppm}$ (from EG1: too small by 1 ppm?) $Q^2 (GeV^2)$

Nucleon structure is the largest uncertainty in calculating HFS. Better g_1 , g_2 , G_M , G_F data at low Q^2 required to resolve discrepancy.

Moments at Low Q²



$$\Gamma_{1,2}^{(N)}(Q^2) = \int_0^{x_{
m th}} x^N g_{1,2}(x,Q^2) dx$$
 $\Gamma_{1,2}^{(N)} \sim (Q^2)^{N+1}$

$$\Gamma_{1,2}^{(N)} \sim (Q^2)^{N+1}$$

$$\Gamma_1^{(2)} \rightarrow \gamma_0 Q^6/(16\alpha m_p^2)$$

$$\Gamma_1^{(2)}
ightarrow \gamma_0 Q^6/(16 lpha m_p^2) \qquad \qquad \gamma_0(Q^2) = rac{16 lpha m_p^2}{Q^6} \int_0^{x_{
m th}} x^2 \left(g_1 - rac{4 m_p^2 x^2}{Q^2} g_2
ight) dx$$

$$\Gamma_1^{(0)} = -\kappa_p^2 Q^2 / (8m_p^2) + c_1 Q^4 + \dots$$

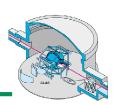
$$B_1 = \Gamma_1^{(0)} - 10m_p^2 \Gamma_1^{(2)} / (9Q^2) + \dots$$

$$\Delta_1[0,Q_1^2] = \left\{ -\frac{3}{4} r_P^2 \kappa_p^2 + 18 m_p^2 c_1 - \frac{5 m_p^2}{4 \alpha} \gamma_0 \right\} Q_1^2$$

$$\Delta_2[0, Q_1^2] = 3m_p^2 Q_1^2 (\gamma_0 - \delta_{LT})/2\alpha$$

$$\begin{split} \Delta_2[0,Q_1^2] &= 3m_p^2Q_1^2\big(\gamma_0 - \delta_{LT}\big)/2\alpha \\ &= \frac{1}{(2\pi^2)}\int_{\nu_0}^{\infty} \frac{K(\nu,Q^2)}{\nu} \frac{\sigma_{LT}(\nu,Q^2)}{Q\nu^2} d\nu \\ &= \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2[g_1(x,Q^2) + g_2(x,Q^2)] dx \end{split}$$

Δ_{pol}



$$\Delta_2[0, Q_1^2] = 3m_p^2 Q_1^2 (\gamma_0 - \delta_{LT})/2\alpha$$

$$\Delta_1[0,Q_1^2] = \left\{ -rac{3}{4}r_P^2\kappa_p^2 + 18m_p^2c_1 - rac{5m_p^2}{4lpha}\gamma_0
ight\}Q_1^2$$

term	$Q^2~({ m GeV^2})$	$_{ m from}$	Kelly's F_2
Δ_1	[0,0.05]	F_2 and g_1	0.45 ± 0.30
	[0.05,20]	F_2	7.01 ± 0.22
		g_1	-1.10 ± 0.55
	$[20,\infty]$	F_2	0.00
		g_1	0.12 ± 0.01
total Δ_1			6.48 ± 0.89
Δ_2	[0,0.05]	g_2	-0.24 ± 0.24
	[0.05,20]	g_2	-0.33 ± 0.33
	$[20,\infty]$	g_2	0.00
total Δ_2			-0.57 ± 0.57
$\Delta_1 + \Delta_2$			5.91 ± 1.06
$\Delta_{ m pol}$			$1.34 \pm 0.24~\mathrm{ppm}$

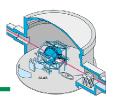
$$\gamma_0 = -1.01 \times 10^{-4} \text{ fm}^4 \text{ (photons)}$$
 $r_P = 0.878(15) \text{ fm (Kelly)}$
 $c_1 = 2.95-3.89 \text{ (fits/}\chi\text{PT)}$

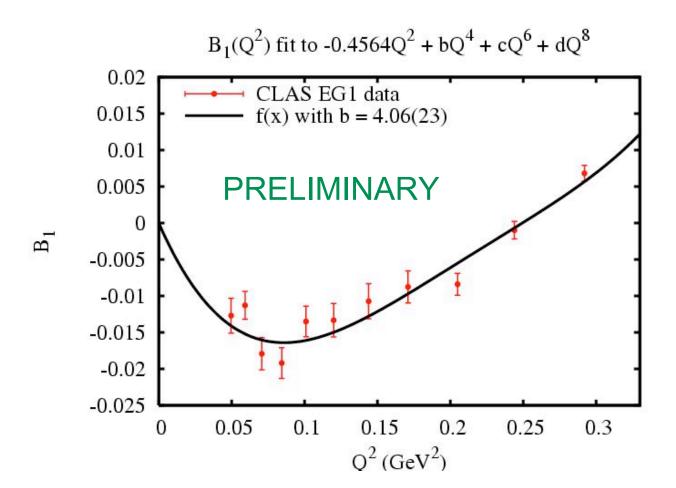
 $\delta_{LT} = 1.35 \times 10^{-4} \text{ fm}^4 \text{ (MAID)}$

$$g_2 = g_2^{WW} \longrightarrow \Gamma_2^{(N)} = -N\Gamma_1^{(N)}/(N+1)$$

$$\Delta_2[0,0.05] =$$
-0.40(05) [g₂^{WW}]
-1.4 [MAID]
-0.24 [EG1 Model]

B₁ from CLAS

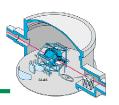


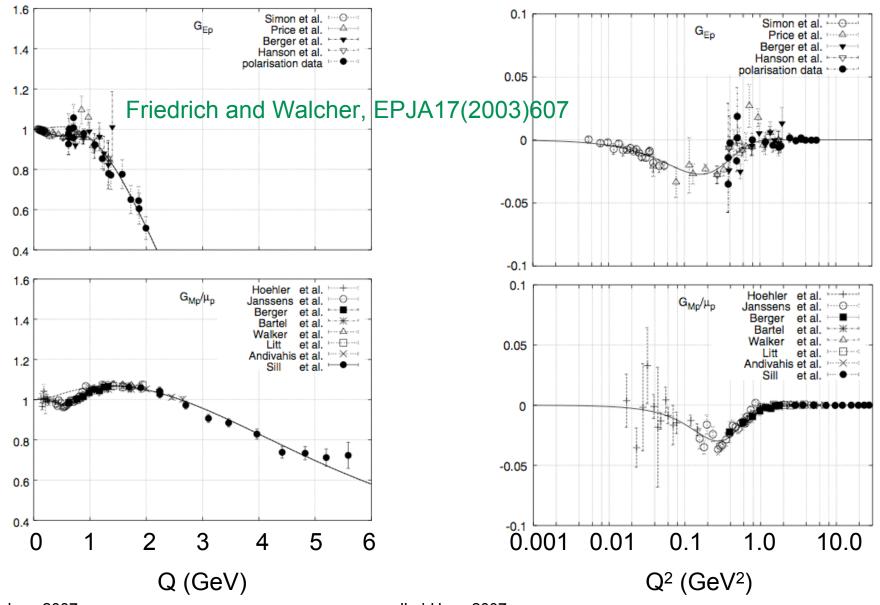


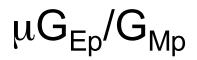
Various estimates change Δ_{pol} up or down within the quoted errors. New data at low Q^2 are needed to improve this.

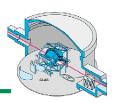
$$\Delta_1[0,0.05] = [-0.75r_P^2\kappa_p^2 + 18m_p^2b]0.05 = 0.32$$

G_{Ep} & G_{Mp}

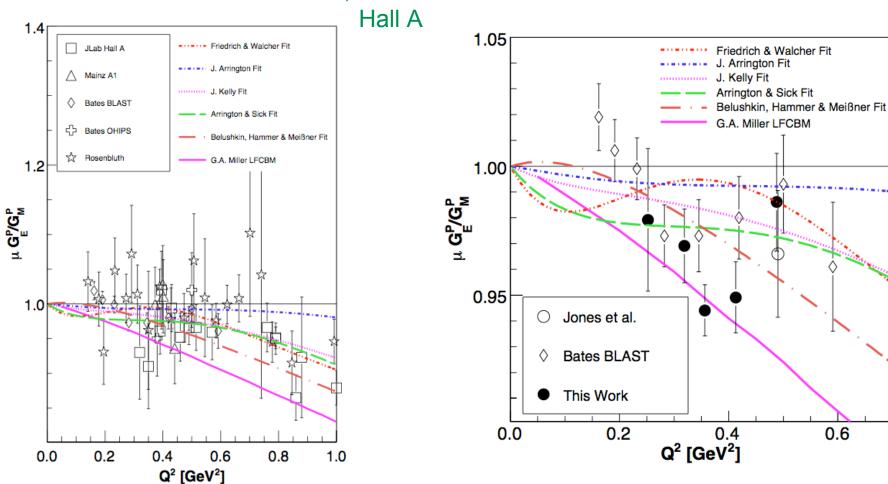






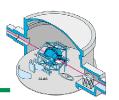


G. Ron et al., nucl-ex 0706.0128



The diversity of fits reflects an inaccurate knowledge of the form factors at low Q²

Zemach Radius



Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{\rm rad})$

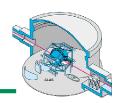
$$\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} - 1 \right]$$

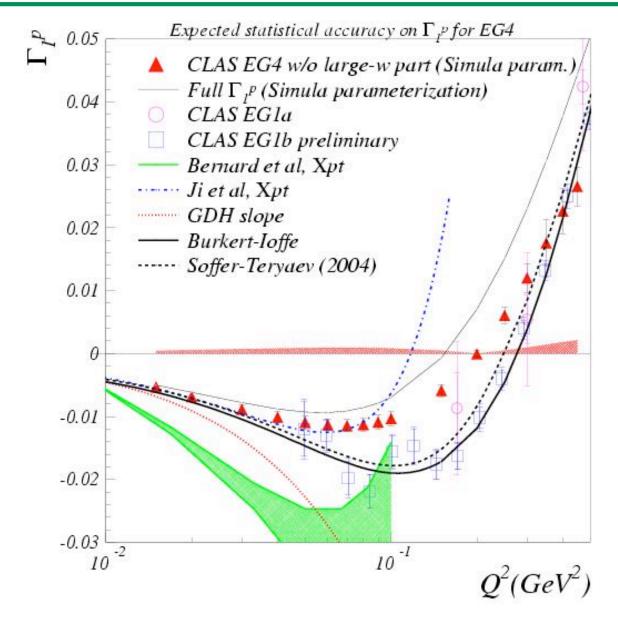
Reference	r _Z (fm)	Δ_{Z} (ppm)	$\Delta_{\rm S}$ - $\Delta_{\rm Z}$ - $\Delta_{\rm pol}$ (ppm)
Kelly	1.069(13)	-41.01	1.11
Sick	1.086(12)	-41.67	1.77
Friedrich	1.048	-40.20	0.30
Dipole	1.025	-39.32	-0.58

Quoted errors on S,Z and pol are 0.16, 0.49, and 0.24 ppm respectively. Quoted error on S-Z-pol is 0.57 ppm.

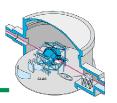
Largest uncertainty in hyperfine splitting comes from low Q² form factors!

EG4 Expectations





In Conclusion



Jefferson Lab, past, present and future, provides high-quality structure function and form factor data that make the experimental determination of moments possible.

- rigorous χPT calculations are often lost on us because our Q^2 is too high
- atomic physics with 14-digit accuracy, in which the nuclear physics enters at the ppm level, is often lost on us because our Q² is too high
- more structure function data at low Q² are on the way
- before the 12 GeV upgrade, Jefferson Lab should do more precise measurements at low Q² including G_E and G_M