d/u Ratio at High x with BoNuS (Barely Off-Shell Nucleon Structure)

K. Griffioen JLab Users Meeting 20 June 2005 for the BONUS Collaboration [Jlab, ODU, Hampton, JMU, W&M, & CLAS collaboration] (with special thanks to S. Kuhn, S. Bueltmann, H. Fenker and C. Keppel)

Neutron Targets are Hard to Come By

- Free neutrons decay in 15 minutes.
- It's difficult to create a dense target of neutral particles: Typical proton target: 4·10²³ p/cm² [10 cm LH] Magnetic bottle: 10³ - 10⁴ n/cm² [TU München]
- Traditional solutions (deuterons and ³He) have potentially large (and not completely known) nuclear corrections: kinematic smearing, binding and off-shell effects, the EMC effect, final state interactions, coherent processes, nonnucleonic components of the wave function, etc.

Cross Section in the Resonance Region

- Data on the Proton: Clear resonant structure, separation from the nonresonant background is possible
- Data on the deuteron: Kinematically smeared even with perfect knowledge of the wave function information is lost

Resonance Transition Amplitudes (in comparison with a quark model)

Structure Functions of the Neutron

- Simple subtraction (deuteron-proton) yields nonsense
- Kinematic shift of the effective Bjorken variable x

$x_{\text{measured}} = \frac{Q^2}{2M\nu}$	$x_{\text{relevant}} = \frac{Q^2}{2(E_n v - p_n \cdot q)}$
0.70	0.69
0.80	0.78
0.90	0.85
1.00	0.90

+ Binding effects, coherent scattering, final state interactions, non-nucleonic degrees of freedom in the ground state

("EMC"-effect)

A Neutron Target?

Ya say ya want a revolution[ary neutron target] Well, you know We all wanna to change the world.

Ya tell me that it's evolution Well, you know We all wanna change the world. - John Lennon

What can we do?

Use the best possible approximation for a free neutron target: a neutron that is "barely" off-shell. Measure d(e, e'p) for low-momentum recoiling protons.

Deviations from the simple "spectator" picture: 1. Final State Interaction

Ciofi degli Atti and Kopeliovich, Eur. Phys. J. A17(2003)133

Deviations from the simple "spectator" picture: 2. Off-shell Effects

Deep Inelastic Structure Functions

How fast do the quarks move inside the nucleon? $(\rightarrow B jorken x)$

Which way do they spin? (helicity $q \uparrow - q \downarrow = \Delta q$)

- SU(6)-symmetric wave function of the proton in the quark model: $|p\uparrow\rangle = \frac{1}{\sqrt{18}} \left(3u\uparrow [ud]_{S=0} + u\uparrow [ud]_{S=1} - \sqrt{2}u\downarrow [ud]_{S=1} - \sqrt{2}d\uparrow [uu]_{S=1} - 2d\downarrow [uu]_{S=1} \right)$
- In this model: d/u = 1/2, $\Delta u/u = 2/3$, $\Delta d/d = -1/3$ for all x
- Hyperfine structure effect: S=1 suppressed => d/u = 0, $\Delta u/u = 1$, $\Delta d/d = -1/3$ for $x \rightarrow 1$
- pQCD: helicity conservation $(q \uparrow \uparrow p) \Rightarrow d/u = 2/(9+1) = 1/5$, $\Delta u/u = 1$, $\Delta d/d = 1$ for $x \rightarrow 1$
- Wave function of the neutron via isospin rotation: replace u -> d and d -> u => using experiments with protons and neutrons one can extract information on u, d, Δu and Δd in the valence quark region.

$d/u (x \rightarrow 1)$

"Spectator Tagging"

Results: Momentum Distribution

Vertical axis: Number of events

Horizontal axis: Proton momenta from 250 to 700 MeV/c

Left: Angular range > 107.5^o Right: Angular range 72.5^o - 107.5^o

3 different ranges in the final state mass W of the unobserved struck neutrons

PWIA model with "light cone"-wave function for deuterium

A Neutron Target?

Say ya got a real solution Well, you know We'd all love to see the plan.

Ask me for a contribution Well, you know We all doin' what we can.

- John Lennon

Inclusive Scattering off a "free" Neutron - the BoNuS^{*} Experiment

- Experiment 03-012 at Jefferson Lab in Hall B (CLAS)
- 4 and 6 GeV / 200 nA electrons impinging on a 10 cm long D_2 gas target (7 atm) => L = $0.4 \cdot 10^{34}$ /cm²s
- PAC-approved for 2 calendar months of running (2005/6)
- Old Domininon Univ., Jefferson Lab, Hampton Univ., William & Mary, James Madison Univ., and the CLAS collaboration

The full BoNuS detector

* BoNuS = **B**arely off-shell **Nu**cleon Scattering

BoNuS - Experimental Setup

Target-detector system for slow protons

- Thin-walled gas target (7 atm., room temperature)
- Radial Time Projection Chamber (RTPC) with Gaseous Electron Multipliers (GEMs)
- 2 Tesla longitudinal magnetic field (to suppress Möller electrons and to measure momentum)
- 3-dimensional readout of position and energy loss ("pads")

Detector Parameters

- Geometric Acceptance
 - Sensitive over 148x2 deg. in phi, 20 cm in Z.
- Momentum Acceptance
 - Protons from \sim 70 to 250 MeV/c
- 3200 readout pads
- Proton Identification from dE/dx
- Vertex Z resolution <~ 10 mm
- Proton Momentum from track curvature
- Track E information from dE/dx

RTPC - GEMs

300-500 V, Gain 100-200

Flat

R=60mm

RTPC - Data Acquisition

- Alice TPC electronics (CERN) with Altro Chip
- 16 channels, 10 bit ADC with up to 25 MHz data rate
- 3-dimensional track reconstruction (using drift time information and 2 -dimensional location of readout pads)

Production Model: Exploded View

Production Model

BoNuS Target

BoNuS Beamline

DVCS Superconducting Solenoid

Fully Instrumented Detector

BoNuS 6 GeV Kinematics

Acceptance for Protons

6 GeV electron beam, 20 "ideal" days -> registered "events"

Scattered electron within CLAS fiducial cuts, proton above 60 MeV/c and 90°

"VIPs": p(proton) < 100 MeV/c, $\theta_{pq} > 110^{\circ}$

Proton reconstructed by the RTPC

Expected W Distributions at 4 and 6 GeV

Expected Data

Fitted Proton Track BoNuS Engineering Run (3-13 June 2005)

- Active region of the BONUS detector lies between the two blue arcs.
- Projection: along the beam direction.
- Curved proton track.

Other Events

- Left: Out-of-time proton
- Right: Minimum-ionizing tracks at high gain

The Future - 11 GeV

$D(e,e'p_s)$

BoNuS

The MINERvA Experiment Main INjector ExpeRiment v-A

MINERvA is a compact, fully active neutrino detector designed to study neutrino-nucleus interactions with unprecedented detail.

The detector will be placed in the NuMI beam line, in front (upstream) of the MINOS near detector.

The MINERvA Collaboration

D. Drakoulakos, P. Stamoulis, G. Tzanakos, M. Zois University of Athens, Greece

D. Casper#, J. Dunmore, C. Regis, B. Ziemer University of California, Irvine

E. Paschos

University of Dortmund

- D. Boehnlein, D. A. Harris#, N. Grossman, M. Kostin, J.G. Morfin*, A. Pla-Dalmau,
 P. Rubinov, P. Shanahan, P. Spentzouris *Fermi National Accelerator Laboratory*
- M.E. Christy, W. Hinton, C.E. Keppel Hampton University
- R. Burnstein, O. Kamaev, N. Solomey Illinois Institute of Technology
- S. Kulagin Institute for Nuclear Research, Russia
- I. Niculescu. G. Niculescu James Madison University
- G. Blazey, M.A.C. Cummings, V. Rykalin Northern Illinois University

W.K. Brooks, A. Bruell, R. Ent, D. Gaskell, W. Melnitchouk, S. Wood Jefferson Lab

- S. Boyd, D. Naples, V. Paolone University of Pittsburgh
- A. Bodek, R. Bradford, H. Budd, J. Chvojka,
 P. de Barbaro, S. Manly, K. McFarland*,
 J. Park, W. Sakumoto, J. Steinman
 University of Rochester
- R. Gilman, C. Glasshausser, X. Jiang, G. Kumbartzki, R. Ransome#, E. Schulte *Rutgers University*
- A. Chakravorty Saint Xavier University
- D. Cherdack, H. Gallagher, T. Kafka, W.A. Mann, W. Oliver *Tufts University*
- J.K. Nelson#, F.X. Yumiceva The College of William and Mary
- * Co-Spokespersons # Members of the MINERvA Executive Committee

Collaboration of Particle, Nuclear, and Theoretical physicists

Objectives of MINERvA

Physics Goals

- Reduce uncertainties in new generation of neutrino oscillation experiments
 - Require precise knowledge of cross sections for Monte Carlo input
- Axial form factor of the nucleon
 - Yet to be accurately measured over a wide Q^2 range.
- Resonance production in both NC and CC neutrino interactions
 - No statistically significant measurements with 1-5 GeV neutrinos.
 - Study of quark-hadron duality with neutrinos.
- Coherent pion production
 - No statistically significant measurements of σ or A-dependence.
- Nuclear effects
 - Expect significant differences for v-A vs e/μ -A nuclear effects.
- Strange Particle Production
 - Important backgrounds for proton decay.
- Parton distribution Functions
- Measurement of high-x behavior of quarks.
- Generalized parton distributions

Lots of Neutrinos-NuMI Beam Line at Fermilab

MINERvA

MINOS

The MINERvA Detector

MINOS used for higher energy forward muon detection.

- v Active segmented scint. detector5.87 tons.
- ν ~1 ton each of nuclear target planes (C, Fe, Pb) upstream.

Large x Structure Functions

- xF₃ and F₂ structure function predictions and error bands
- Will cover wide range in x, Q², overlapping and complementary to Jefferson Lab 12 GeV regime

Current Status of MINERvA

- Received Stage I approval in April 2004.
- Successful summer 2004 R&D program concentrating on front-end electronics and scintillator extrusions.
- Detailed costing and schedule module exists.
- Underwent first FNAL Director's (Temple) Review in January 2005.
- MINERvA is a project in PPD with project directorate approved by Fermilab and project management plan currently under discussion.
- Developing prototypes of many components.
- Current scheduling model indicates construction starting in Oct.
 2006 and installation-finishing/commissioning-starting in early Fall
 2008.

Conclusions

- Data from neutron targets is important for understanding the nucleon.
- BoNuS provides the first almost free nucleon target.
- BoNuS had a successful engineering run in June 2005. The full experiment is scheduled for October-November 2005.
- BoNuS and MINERvA will determine d/u at high x.