

Future Studies of Nucleon Spin Structure with 12 GeV Electron Beams at Jefferson Laboratory

K. Griffioen College of William & Mary

griff@physics.wm.edu

Workshop on Gluon Polarization in the Nucleon

U. Illinois Champaign-Urbana 16-17 June 2008

Gluon2008

 ΔG at JLab?

Could be constrained by QCD evolution but this requires an understanding of higher twist at moderate Q²

> Transverse momentum dependent distributions are sensitive to quark orbital angular momentum

 $\Delta\Sigma$

 $\frac{1}{2} = \frac{1}{2} + \Delta G + L_z$ Known

JLab

The College of _____

WILLIAM & MARY

 $F_2(x,Q^2)$ and $g_1(x,Q^2)$

x = 0.175

x = 0.25

x = 0.35

x = 0.45

x = 0.50

x = 0.55

x = 0.66

x = 0.75

100

200

CLAS EG1 g_1^{p} (Q²<0.7)

- At low Q^2 the Δ resonance drives g_1 negative
- Extensive x-range at fixed Q² allows integration over x
- Red curve is the EG1 model used for radiative corrections

CLAS EG1 g_1^p (Q²>0.7) & g_1/F_1 WILLIAM & MARY

- At higher Q², g₁ becomes positive everywhere
- g_1/F_1 falls far below the DIS extrapolation at low Q^2
- Red curve is the EG1 model (dashed: DIS extrapolation)

The College of -

A₁ Data from EG1

 $~g_1/F_1$

Close and Melnitchouk, PRC 68, 035210 (2003)

Isgur, PRD 59, 034013 (2003)

7

W > 2; Q² > 1

Bjorken Sum & Higher Twist

$$\Gamma_1^{(n)} = \int_0^1 x^n g_1(x, Q^2) dx = \frac{a_n}{2}, \quad n = 0, 2, 4, \dots,$$

$$\Gamma_2^{(n)} = \int_0^1 x^n g_2(x, Q^2) dx = \frac{1}{2} \frac{n}{n+1} (d_n - a_n), \quad n = 2, 4, \dots,$$

Bjorken Sum Rule:

$$\Gamma_1^{p-n} = \frac{g_A}{6} \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi} \right)^2 - 20.21 \left(\frac{\alpha_s}{\pi} \right)^3 \right] + \frac{\mu_4^p}{Q}$$
$$\mu_4^{p-n} = \frac{M^2}{9} \left(a_2^{p-n} + 4d_2^{p-n} + 4f_2^{p-n} \right)$$

$$d_2^{p-n} = \int_0^1 dx \ x^2 \left(2g_1^{p-n} + 3g_2^{p-n} \right)$$

Fit Γ_1^{p-n} to powers of $1/Q^2$ and extract f_2^{p-n}

-0.1

WILLIAM & MARY Higher Twist from g₁ in CLAS

$$\left[\frac{g_1(x,Q^2)}{F_1(x,Q^2)}\right]_{\exp} F_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{LT} + h^{g_1}(x)/Q^2$$

$$1 < Q^2 < 5 \,\,{
m GeV}^2, \quad 2 < W < 3.5 \,\,{
m GeV}^2$$
 $\int_0^1 dx h^{g_1}(x) = rac{4}{9} M^2 (d_2 + f_2)$

•F₁ from NMC fit to F₂ and 1998 SLAC fit to R
•g₁ (leading twist) from NLO fit at high Q²
•h from fit to all data, especially CLAS in the pre-asymptotic region
•d₂: twist-3, f₂: twist-4

PR12-06-109

CLAS12 Exploded View

CLAS12 Target Region

Polarized Target

NH₃ (80%), ND₃(40%) or ⁶LiD(25%) target, dynamically polarized along beam direction in 1K horizontal cryostat. Holding field supplied by Central Detector Solenoid

Presently being designed by UVa (Don Crabb), MIT (Yelena Prok) and Jefferson Lab. Part of CLAS12 base equipment.

Gluon2008

CLAS12 A₁

Proton

W > 2; Q² > 1

Deuteron

$\mathsf{CLAS12}\ \Delta u\ \&\ \Delta d$

$$A_1(x,Q^2) = \frac{\sum e_i^2 \Delta q_i(x,Q^2)}{\sum e_i^2 q_i(x,Q^2)}$$

Simulated Data for EG12 Extracted from A_1^{p} , A_1^{d} and d/u

17 June 2008

PDFs and CLAS

- Error envelopes for PDFs from LSS05 global analysis (green)
- CLAS EG1 data significantly improve errors on Δu , Δd , Δx and ΔG (blue)
- CLAS EG12 (12 GeV upgrade) will especially improve ∆G (red)

1

CLAS SIDIS

$$A_1^h(x,Q^2,z) = \frac{\sum_q e_q^2 \Delta q(x,Q^2) D_q^h(z,Q^2)}{\sum_{q'} e_{q'}^2 q'(x,Q^2) D_{q'}^h(z,Q^2)}$$

- Existing EG1 data show that factorization works remarkably well
- g_1/F_1 for inclusive, $\pi^+ + \pi^-$, and π^0 are consistent with each other in the range 0.4 < z < 0.7, as expected in LO with factorization and current fragmentation dominance.
- No significant *z*-dependence seen for 0.3 < z < 0.7; only weak p_T dependence.

CLAS12 Moments

- Coverage predicted for CLAS12 Γ_1^{p}

• Expected error bars for CLAS12 Γ_1^{p}

CLAS12 Moments

- Coverage predicted for CLAS12 Γ_1^{d}

• Expected error bars for CLAS12 Γ_1^{p-n}

PR12-06-122

G. Cates N. Liyanage Z. Meziani G. Rosner B. Wojtsekhowski X. Zheng Hall A

Measurement of the Neutron Spin Asymmetry A₁ⁿ in the Valence Quark Region Using 8.8 GeV and 6.6 GeV Beam Energies and the BigBite Spectrometer in Hall

A_1 in Hall A

Polarized ³He Target $P_t > 50\%$

A₁ in Hall A

Hall A Setup

BigBite Spectrometer gives large acceptance

HRS allows precise crosscheck and normalization

A_1 in Hall A

Error projections

Helicity non-conservation suggests orbital angular momentum

A₁ in Hall A

PR12-06-121

T. AverettZ. MezianiB. SawatzkyHall C

A Path to Color Polarizabilities in the Neutron: A Precise Measurement of the Neutron g_2 and d_2 at High Q² in Hall C

g₂ contains information on quark-gluon correlations

Compton amplitude of $\gamma^*(+1) + N(+1/2) \rightarrow \gamma^*(0) + N(-1/2)$

Massless quarks cannot produce a helicity flip. Therefore, QCD allows

- 1) single quark scattering with the quark carrying off one unit of angular momentum
- 2) quark scattering with an additional transversely polarized gluon

g_2 in Hall C

Estimates for g_2

Data are taken for a number of x values at fixed Q², which allows an accurate integration and extraction of d_2 (Q²) at three points.

$$d_2(Q^2) = \int_0^1 dx \, x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)]$$

PR12-07-107

- Measures SIDIS for $\pi^{\text{+}},\,\pi^{0},\,\pi^{\text{-}}$
- Large acceptance with CLAS12
- Look at A_{LL} (or A_1) and A_{UL}

N/q	U	L	Т
U	$\mathbf{f_1}$		h_1^\perp
L		$\mathbf{g_1}$	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$\mathbf{h_1}$ h_{1T}^{\perp}

- π^+ (triangles), π^0 (open circles), π^- (inverted trianges)
- inclusive (solid circles), A₁=x^{0.72} (dashes)
- GRV98 and GRSV PDFs at Q²=2 GeV² (solid line)

 $\sigma_{UL}^{\sin 2\phi} \propto S_L 2(1-y) \sin 2\phi \sum_{q,\bar{q}} e_q^2 x h_{1L}^{\perp q}(x) H_1^{\perp q}(z)$

- \bullet sin2 ϕ moment of A_{UL} gives Mulders distribution function and Collins fragmentation function.
- Mulders: transversely polarized quarks in long. pol. nucleon

0.5

Т

 h_1^\perp

 h_{1L}^{\perp}

 h_{17}^{\perp}

 h_1

Predictions with (solid) and without (dashed) orbital angular momentum

$$A_p^{\pi^+ - \pi^-}(x) = \frac{4\Delta u_V(x) - \Delta d_V(x)}{4u_V(x) - d_V(x)} \qquad A_d^{\pi^+ - \pi^-}(x) = \frac{\Delta u_V(x) + \Delta d_V(x)}{u_V(x) + d_V(x)}$$

PR12-06-113

S. Bueltmann M. Christy H. Fenker K. Griffioen S. Kuhn W. Melnitchouk V. Tvaskis Hall B

40 Days11 GeV50 nAL= $5x10^{33}$ /cm²/s0.1<x<0.8</td>0.1<Q²<14 GeV²</td>Deuterium unpolarized (BONUS)

The Structure of the Free Neutron at Large x-Bjorken

BONUS

D(e,e') (black - untagged) D(e,e'p_s) (red - tagged) 70 < p_s < 150 MeV/c cross section vs. W (W*) E_{beam} = 4.223 GeV <Q²> = 1.19 (GeV/c)² Backwards p_s implies no FSI and initially $p_n = -p_s$ and $E_n^2 = M^{*2} + p_s^2$ Provides F_2^n for extracting

 g_1 from g_1/F_1 at high x

11 GeV points: W* > 2 GeV squares: W* > 1.8 GeV

2.1, 4.2, 5.3 GeV

- JLab at 12 GeV will measure g₁, g₂, F₁ and F₂ on polarized p, d and ³He targets
 - 0.1 < x < 0.95 $0.4 < Q^2 < 12 \text{ GeV}^2$
- JLab at 12 GeV will measure SIDIS
 - for π^+ , π^- , π^0
 - 0.25 < z < 0.8 $0.1 < p_T < 1.5$
- JLab at 12 GeV will measure $A_{LL},\,A_{UL}$ and their azimuthal moments
- These measurements will help us understand
 - higher twist
 - gluon polarization ΔG
 - quark orbital angular momentum
- Proposals can be found at http://www.jlab.org/div_dept/physics_division/experiments/