The Longitudinal Spin Structure of the Nucleon

CLAS12 Proposal PR12-06-109 to PAC30

A Third Decade of Spin Structure Functions

Keith Griffioen College of William & Mary for the CLAS Collaboration

The Longitudinal Spin Structure of the Nucleon

A 12 GeV Research Proposal to Jefferson Lab (PAC 30)

Moskov Amarian, Stephen Bültmann, Gail Dodge, Nevzat Guler, Henry Juengst, Sebastian Kuhn[†]*, Lawrence Weinstein *Old Dominion University*

Harut Avakian, Peter Bosted, Volker Burkert, Alexandre Deur[†], Vipuli Dharmawardane[†] $Jefferson \ Lab$

 $\begin{array}{c} {\rm Keith \ Grifficen}^{\dagger} \\ {\rm The \ College \ of \ William \ and \ Mary} \end{array}$

Hovanes Egiyan, Maurik Holtrop[†] University of New Hampshire

Stanley Kowalski, Yelena Prok[†] Massachusetts Institute of Technology

> Don Crabb[†], Karl Slifer University of Virginia

> > Tony Forest[†] Louisiana Tech

Angela Biselli Fairfield University Kyungseon Joo University of Connecticut

Mahbub Khandaker Norfolk State University

Elliot Leader Imperial College, London, England

Aleksander V. Sidorov Bogoliubov Theoretical Laboratory, JINR Dubna, Russia

Dimiter B. Stamenov Inst. for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A CLAS collaboration proposal

[†] Co-spokesperson * Contact: Sebastian Kuhn, Department of Physics, Old Dominion University, Norfolk VA 23529. Email: skuhn@odu.edu

Spin Structure Observed

$$A_{\parallel} = (N^+ - N^-)/(N^+ + N^-)$$

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i^{\uparrow}(x) + q_i^{\downarrow}(x)],$$

$$g_1(x) = \frac{1}{2} \sum_i e_i^2 [q_i^{\uparrow}(x) - q_i^{\downarrow}(x)] \equiv \sum_i e_i^2 \Delta q_i(x).$$

The First Decade 1993 ± 5

- g₁ DIS measured for p, d and ³He
- CERN/HERA/<mark>SLAC</mark>
- (AAC: hepph0603213) NLO fits to extract quark and gluon distributions
- Notice the hole at high x and Q²<10 GeV²
- CLAS12 coverage (red)

The First Decade

	$\Delta ar{q}$	Δg	$\Delta\Sigma$
Type 1	-0.05 ± 0.01	0.31 ± 0.32	0.27 ± 0.07
Type 2	-0.06 ± 0.02	0.47 ± 1.08	0.25 ± 0.10
AAC03	-0.06 ± 0.02	0.50 ± 1.27	0.21 ± 0.14

The Second Decade 2004 ± 6

- Notice the missing data at high and low *x* for $Q^2 > 2 \text{ GeV}^2$.
- Notice the missing A_1 data at high x not dominated by the Δ resonance.

The Second Decade

- Q² evolution of moments
- GDH sum rule

$$\Gamma_1^p(Q^2) = \int_0^1 g_1^p(x,Q^2) dx$$
$$\Gamma_1^d(Q^2) = \int_0^1 g_1^d(x,Q^2) dx$$

What Still Needs to Be Explored?

- High *x*
- Flavor decomposition
- Higher twist
- Moments

How Do We Do So? • $E_{\text{beam}} = 11 \text{ GeV}$

The Third Decade 2015 ± 7

- $L = 2 \times 10^{35} / cm^2 / s$
- CLAS12 acceptance
- p and d targets
- $P_{b} = 85\% P_{t} = 80(40)\% p(d)$
- 80 days of beam time
- Stat ~ syst errors at high x

Kinematic Coverage (full)

Kinematic Coverage (DIS)

SU(6):
$$\begin{array}{l} Models \ at \ High \ x \\ p \uparrow = \ \frac{1}{\sqrt{2}}u \uparrow (ud)_{S=0} + \frac{1}{\sqrt{18}}u \uparrow (ud)_{S=1} - \frac{1}{3}u \downarrow (ud)_{S=1} \\ -\frac{1}{3}d \uparrow (uu)_{S=1} - \frac{\sqrt{2}}{3}d \downarrow (uu)_{S=1}, \end{array}$$

Model for $x \rightarrow 1$	A_1^p	A_1^n	d/u	∆u/u	∆d/d
SU(6)	5/9	0	1/2	2/3	-1/3
w/ hyperfine ($E_{S=0} < E_{S=1}$)	1	1	0	1	-1/3
One gluon exchange	1	1	0	1	-1/3
Suppressed symmetric WF	1	1	0	1	-1/3
S=1/2 dominance	1	1	1/14	1	1
$\sigma_{1/2}$ dominance	1	1	1/5	1	1
pQCD (conserved helicity)	1	1	1/5	1	1

World Data on A₁

Measurements (outside of JLab) From NLO analysis on PDFs

Existing Data from CLAS

Predicted Data from CLAS12

Proton

W > 2; Q² > 1

Deuteron

Quark polarization in the valence limit

$$A_1(x,Q^2) = \frac{\sum e_i^2 \Delta q_i(x,Q^2)}{\sum e_i^2 q_i(x,Q^2)}$$

Simulated Data for EG12 Extracted from A_1^p , A_1^d and d/u

Improvements in Δu , Δd , ΔG , Δs

Flavor decomposition from SIDIS $A_1^h(x,Q^2,z) = \frac{\sum_q e_q^2 \Delta q(x,Q^2) D_q^h(z,Q^2)}{\sum_{q'} e_{q'}^2 q'(x,Q^2) D_{q'}^h(z,Q^2)}$

- Existing EG1 data show that factorization works remarkably well
- g_1/F_1 for inclusive, $\pi^+ + \pi^-$, and π^0 are consistent with each other in the range 0.4 < z < 0.7, as expected in LO with factorization and current fragmentation dominance.
- No significant *z*-dependence seen for 0.3 < z < 0.7; only weak p_T dependence.

Flavor decomposition from SIDIS

- Combined DIS and SIDIS analysis at NLO (e.g., Sassot et al.)
- "Model independent" approach (Frankfurt & Strikman): Solve 2 independent equations for Δu_V and Δd_V :

(Requires that fragmentation functions are spin-independent)

$$A^{\pi^{+}-\pi^{-}} \equiv \frac{N^{\pi^{+}}_{\uparrow\downarrow} - N^{\pi^{-}}_{\uparrow\downarrow} - N^{\pi^{+}}_{\uparrow\uparrow} + N^{\pi^{-}}_{\uparrow\uparrow}}{N^{\pi^{+}}_{\uparrow\downarrow} - N^{\pi^{-}}_{\uparrow\downarrow} + N^{\pi^{+}}_{\uparrow\uparrow} - N^{\pi^{-}}_{\uparrow\uparrow}}$$
$$A^{\pi^{+}-\pi^{-}}_{1,p} = \frac{4\Delta u_{v}(x) - \Delta d_{v}(x)}{4u_{v}(x) - d_{v}(x)}$$
$$A^{\pi^{+}-\pi^{-}}_{1,^{2}H} = \frac{\Delta u_{v}(x) + \Delta d_{v}(x)}{u_{v}(x) + d_{v}(x)}$$

$$\frac{\Delta d_v(x)}{d_v(x)} = \frac{4}{5} A_{1,2H}^{\pi^+ - \pi^-} \left(\frac{u}{d} + 1\right) - \frac{1}{5} A_{1,p}^{\pi^+ - \pi^-} \left(\frac{4u}{d} - 1\right)$$

Flavor Decomposition from SIDIS

Higher Twist from g_1

$$Q^{2} \approx 1 - 5 \, GeV^{2}, \ 4 < W^{2} < 10 \, GeV^{2} \qquad Preasymptotic region$$

$$\left[\frac{g_{1}(x,Q^{2})}{F_{1}(x,Q^{2})}\right]_{exp}^{2} F_{1}(x,Q^{2})_{exp} = g_{1}(x,Q^{2})_{exp} \iff g_{1}(x,Q^{2})_{LT} + h^{g_{1}}(x)/Q^{2}$$

$$F_{2}^{NMC}, R_{1998}(SLAC) \qquad \text{in model independent way}$$

$$\int_{0}^{1} dx \ h^{g_{1}}(x) = \frac{4}{9} M^{2}(d_{2} + f_{2})$$

$$HT(\tau=3) \qquad HT(\tau=4)$$

Higher Twist from Moments

$$\Gamma_{1}^{(n)} = \int_{0}^{1} x^{n} g_{1}(x,Q^{2}) dx = \frac{a_{n}}{2}, \quad n = 0, 2, 4, ...,$$

$$\Gamma_{2}^{(n)} = \int_{0}^{1} x^{n} g_{2}(x,Q^{2}) dx = \frac{1}{2} \frac{n}{n+1} (d_{n} - a_{n}), \quad n = 2, 4, ...,$$

$$F_{1}^{(n)} = \frac{1}{2} \int_{0}^{1} x^{n} g_{2}(x,Q^{2}) dx = \frac{1}{2} \frac{n}{n+1} (d_{n} - a_{n}), \quad n = 2, 4, ...,$$

$$F_{1}^{p-n} = \frac{g_{A}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} \right] + \frac{\mu_{4}^{p-n}}{Q^{2}} + ...$$

$$F_{1}^{p-n} = \frac{M^{2}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} \right] + \frac{\mu_{4}^{p-n}}{Q^{2}} + ...$$

$$F_{1}^{p-n} = \frac{M^{2}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} \right] + \frac{\mu_{4}^{p-n}}{Q^{2}} + ...$$

$$F_{1}^{p-n} = \frac{M^{2}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} \right] + \frac{\mu_{4}^{p-n}}{Q^{2}} + ...$$

$$F_{1}^{p-n} = \frac{M^{2}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} \right] + \frac{\mu_{4}^{p-n}}{Q^{2}} + ...$$

$$F_{1}^{p-n} = \frac{M^{2}}{9} \left(a_{2}^{p-n} + 4d_{2}^{p-n} + 4f_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$F_{1}^{p-n} = \frac{1}{2} \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

Higher Twist from Moments

- Example from existing EG1b data
- Fit Γ_1^{p-n} to powers of $1/Q^2$ and extract f_2^{p-n}
- CLAS12 data needed to improve accuracy

Sum Rules

• Coverage predicted for CLAS12 Γ_1^{p}

• Expected error bars for CLAS12 Γ_1^{p}

Sum Rules

• Expected errors for CLAS12 Γ_1^{d}

• Expected errors for CLAS12 Γ_1^{p-n}

Summary

- There is much to learn in a third decade of spin structure function measurements
- JLab and CLAS12 will play a key role in this
- Spin structure measurements are flagship experiments for the 12 GeV program
- Given past experience, this experiment is technically feasible and of great theoretical interest