

A Decade of Structure Function Measurements at Jefferson Lab

K. Griffioen College of William & Mary

griff@physics.wm.edu

DNP 2007 11 October 2007

Inelastic Scattering

Unpolarized Cross Section:

$$rac{d^2\sigma}{dxdQ^2}=rac{8\pilpha^2 y}{Q^4}\left[rac{y}{2}F_1+rac{\xi}{2xy}F_2
ight]$$

Polarized Cross Section:

$$rac{d^2\Delta\sigma}{dxdQ^2} = rac{8\pilpha^2 y}{Q^4} [\coslpha\{(\xi+rac{y}{2})m{g_1}-rac{\gamma y}{2}m{g_2}\} - \sinlpha\cos\phi\{rac{y}{2}m{g_1}+m{g_2}\}]$$

 $\begin{array}{l} \alpha = \text{polar angle of target spin wrt the beam axis} \\ \phi = \text{azimuthal spin angle wrt the scattering plane} \\ \alpha = 0^{\circ} \text{ (longitudinal); } \alpha = 90^{\circ}, \phi = 0^{\circ} \text{ (transverse).} \\ \gamma^2 = 4M^2x^2/Q^2 = Q^2/\nu^2 \\ \xi = 1 - y - \gamma y^2/4 \end{array}$

Parton Model:
$$\begin{split} &F_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 (q^{\uparrow}(x) + q^{\downarrow}(x) + \bar{q}^{\uparrow}(x) + \bar{q}^{\downarrow}(x)) \\ &F_2(x,Q^2) = 2x F_1(x,Q^2) \\ &g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 (q^{\uparrow}(x) - q^{\downarrow}(x) + \bar{q}^{\uparrow}(x) - \bar{q}^{\downarrow}(x)) \end{split}$$

 $u = p \cdot q/M = (E - E')_{
m lab}$

Lorentz invariants:

k

P, M

$$egin{aligned} Q^2 &= -q \cdot q = (4EE' \sin^2 rac{ heta}{2})_{ ext{lab}} \ x &= -q \cdot q/2p \cdot q = (Q^2/2M
u)_{ ext{lab}} \ y &= p \cdot q/p \cdot k = (
u/E)_{ ext{lab}} \ W^2 &= (p+q)^2 = (M^2 + 2M
u - Q^2)_{ ext{lab}} \ s &= (k+p)^2 = (2EM+M^2)_{ ext{lab}} \end{aligned}$$

k

W

The College of -----

WILLIAM & MARY

 $F_{2}(x,Q^{2})$ and $g_{1}(x,Q^{2})$

11 October 2007

DNP2007

x = 0.175

x = 0.25

x = 0.35

x = 0.45

x = 0.50

x = 0.55

x = 0.66

x = 0.75

100 200

NLO Fits

$$\frac{1}{2} = \frac{\Delta \Sigma}{2} + \Delta G + L_z$$

	$\Delta ar{q}$	Δg	$\Delta\Sigma$
Type 1	-0.05 ± 0.01	0.31 ± 0.32	0.27 ± 0.07
Type 2	-0.06 ± 0.02	0.47 ± 1.08	0.25 ± 0.10
AAC03	-0.06 ± 0.02	0.50 ± 1.27	0.21 ± 0.14

- Infinite Q² Parton Model, PDF(x)
- Large Q^2 pQCD, PDF(x,log(Q^2))
- Medium Q² Higher twist, target mass correct.
- Low Q² Resonances (complexity)
- Tiny Q² Chiral perturbation theory
- Zero Q² Real photons
- Complexity, as measured by $\gamma_0,\,\delta_{\text{LT}},\,d_2\,\text{and}\,\,\Gamma_1$ disappears rapidly at high and low Q^2

JLab

11 October 2007

CLAS EG1 g_1^{p} (Q²<0.7)

- At low Q^2 the Δ resonance drives g_1 negative
- Extensive x-range at fixed Q² allows integration over x
- Red curve is the EG1 model used for radiative corrections

CLAS EG1 g_1^p (Q²>0.7) & g_1/F_1 ILLIAM & MARY

- At higher Q², g₁ becomes positive everywhere
- g_1/F_1 falls far below the DIS extrapolation at low Q^2
- Red curve is the EG1 model (dashed: DIS extrapolation)

The College of -

PDFs and CLAS

- Error envelopes for PDFs from LSS05 global analysis (green)
- CLAS EG1 data significantly improve errors on Δu , Δd , Δx and ΔG (blue)
- CLAS EG12 (12 GeV upgrade) will especially improve ΔG (red)

Duality

Hall C PRL85(00)1182 Global duality to 10% Local duality to 10% W=1.232, 1.535, 1.680 GeV

<u>Duality</u> - structure functions averaged over resonances behave according to DIS systematics <u>Global</u> - all resonances <u>Local</u> - one resonance

Polarized Duality

$$\tilde{\Gamma}_1^{res} = \int_{x_{\min}}^{x_{\max}} g_1^{res}(x, Q^2) dx$$

$$\tilde{\Gamma}_1^{dis} = \int_{x_{\min}}^{x_{\max}} g_1^{dis}(x, Q^2) dx$$

Hall A E01-012 Liyanage, Chen, Choi, Solvignon Global duality for Q²>1.8 GeV² Δ violates duality for Q²<1.7 GeV²

11 October 2007

< 1.38 GeV

 $M \le W < 1.38 \text{ GeV}$

Δ (1232)

1.58≤W<1.8GeV

F₁₅ (1680)

2

3

4

1.38 ≤ W < 1.58 GeV

S₁₁ (1535)

Global

3

 $1.07 \le W < 2.0 \text{ GeV}$

0.94 < W < 2.0 GeV

2

0

 $Q^2 (GeV^2/c^2)$

Proton

Deuteron

GRSV

DIS fit

AAC

0

DNP2007

0

5

Duality-Averaging

Duality Averaged F_1 and F_1

Hall C: Christy hepph/0709.1775

The College of -

WILLIAM & MARY

A₁ Data from EG1

11 October 2007

WILLIAM & MARY Quark polarization in the valence limit

$$A_1(x,Q^2) = \frac{\sum e_i^2 \Delta q_i(x,Q^2)}{\sum e_i^2 q_i(x,Q^2)}$$

Simulated Data for EG12 Extracted from A_1^{p} , A_1^{d} and d/u

11 October 2007

RSS g₂^p

The College of — ______ WILLIAM & MARY

Proton Resonance Fits

Small Angle GDH

 $R = \sigma_1 / \sigma_T$ (DIS)

11 October 2007

$R = \sigma_L / \sigma_T$ (Resonance)

11 October 2007

WILLIAM & MARY Higher Twist from g₁ in CLAS

$$\left[\frac{g_1(x,Q^2)}{F_1(x,Q^2)}\right]_{\exp} F_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{LT} + h^{g_1}(x)/Q^2$$

 $1 < Q^2 < 5 \ {
m GeV}^2, \quad 2 < W < 3.5 \ {
m GeV}$ $\int_0^1 dx h^{g_1}(x) = rac{4}{9} M^2 (d_2 + f_2)$

•F₁ from NMC fit to F₂ and 1998 SLAC fit to R
•g₁ (leading twist) from NLO fit at high Q²
•h from fit to all data, especially CLAS in the pre-asymptotic region
•d₂: twist-3, f₂: twist-4

11 October 2007

$$\Gamma_1^{(n)} = \int_0^1 x^n g_1(x, Q^2) dx = \frac{a_n}{2}, \quad n = 0, 2, 4, \dots,$$

$$\Gamma_2^{(n)} = \int_0^1 x^n g_2(x, Q^2) dx = \frac{1}{2} \frac{n}{n+1} (d_n - a_n), \quad n = 2, 4, \dots,$$

Bjorken Sum Rule:

$$\Gamma_1^{p-n} = \frac{g_A}{6} \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi}\right)^2 - 20.21 \left(\frac{\alpha_s}{\pi}\right)^3 \right] + \frac{\mu_A}{6}$$
$$\mu_4^{p-n} = \frac{M^2}{9} \left(a_2^{p-n} + 4d_2^{p-n} + 4f_2^{p-n} \right)$$

$$d_2^{p-n} = \int_0^1 dx \ x^2 \left(2g_1^{p-n} + 3g_2^{p-n} \right)$$

Fit Γ_1^{p-n} to powers of $1/Q^2$ and extract f_2^{p-n}

0.3

0.1

-0.1

-0.2

$$M_{1}(Q^{2}) = \int_{0}^{1} dx \frac{\xi^{2}}{x^{2}} \left\{ g_{1}(x, Q^{2}) \left(\frac{x}{\xi} - \frac{1}{9} \frac{M^{2} x\xi}{Q^{2}} \right) \right. \\ \left. - g_{2}(x, Q^{2}) \frac{4}{3} \frac{M^{2} x^{2}}{Q^{2}} \right\}, \\ \xi = \frac{2x}{1 + \sqrt{1 + 4M^{2} x^{2}/Q^{2}}}, \\ M_{1}(Q^{2}) = \frac{\mu_{2}(Q^{2}) + \frac{\mu_{4}(Q^{2})}{Q^{2}} + \frac{\mu_{6}(Q^{2})}{Q^{4}} + \cdots}{\mu_{4}(Q^{2})} = \frac{4f_{2}(Q^{2})}{Q^{2}} + \frac{g_{6}(Q^{2})}{Q^{4}} + \cdots}, \\ \mu_{4}(Q^{2}) = \frac{4f_{2}(Q^{2})}{9M^{2}}, \\ f_{2} = \frac{0.039 \pm 0.022(\text{stat}) \pm \frac{0.000}{0.018}(\text{sys})}{\pm 0.030(\text{low } x) \pm \frac{0.007}{0.011}(\alpha_{s})}, \\ d_{2}(Q^{2}) = \int_{0}^{1} dx x^{2} [2g_{1}(x, Q^{2}) + 3g_{2}(x, Q^{2})] \\ \chi_{E} = \frac{2}{3}(2d_{2} + f_{2}), \\ \chi_{B} = \frac{1}{3}(4d_{2} - f_{2})$$

CLAS, Osipenko

PLB609(05)259

$$\chi_E = 0.026 \pm 0.015(\text{stat}) \pm {}^{0.021}_{0.024}(\text{sys}),$$

$$\chi_B = -0.013 \mp 0.007(\text{stat}) \mp {}^{0.010}_{0.012}(\text{sys})$$

³He Higher Twist

- Higher twist terms from world neutron data $\mu_{4} = 0.019(24)M^{2}$
 - $\mu_6 = -0.019(17)M^2$
- Twist-4 term

 $\mu_{4} = M^{2}/9 (a_{2}+4d_{2}+4f_{2})$ SLAC E155x: d₂=0.0079(48) E99-117: $d_2 = 0.0062(28)$ $f_2 = 0.034(43)$ (total)

Color polarizabilities

 $\chi_{\rm F} = 0.033(29)$ $\chi_{\rm B} = -0.001(16)$ Hall A E94-010

- Osipenko, CLAS, proton, PLB609(05)249 - $f_2 = 0.039(39)$ $\chi_E = 0.026(27)$ $\chi_B = -0.013(13)$
- E94-010, Hall A, neutron $-f_2 = 0.034(43)$ $\chi_E = 0.033(29)$ $\chi_B = -0.001(16)$
- Deur, CLAS, Bjorken (p-n) $-f_2 = -0.101(74)$ $\chi_E = -0.077(50)$ $\chi_B = 0.024(28)$
- More accurate determinations are needed.

Baldin Sum Rule

$$\alpha + \beta = \frac{1}{4\pi^2} \int_{\nu_0}^{\infty} \frac{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}}{\nu^2} d\nu$$

$$\alpha(Q^2) + \beta(Q^2) = \frac{1}{4\pi^2} \int_{\nu_0}^{\infty} \frac{K}{\nu} \frac{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}}{\nu^2} d\nu$$
$$= \frac{e^2 M}{\pi Q^4} \int_0^{x_0} 2x F_1(x, Q^2) dx$$

 α and β are E&M polarizabilities

Unpolarized analog to GDH

CLAS Moments $\Gamma_1^{p,d}$

The College of —

WILLIAM & MARY

³He Polarizabilities

$\gamma_0{}^{p\text{-n}}$ and $\gamma_0{}^{p\text{+n}}$

A Deur CLAS + Hall A

For isovector (p-n) case Δ contribution cancels

a = -0.97(11)b = 5.13(94)[targets for χ PT]

```
Prok et al., CLAS EG1
```

a = -3.643(1)b = 20.180(8) [targets for χ PT]

Amarian et al., PRL93(04)152301

Higher Twist d₂

$$d_2(Q^2) = \int_0^1 dx \, x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)]$$

CLAS EG1 (proton) Osipenko, PRD71(05)054007 Model-dependent determination Hall A (neutron) E94-010 Amarian, PRL92(04)022301

Hydrogen Hyperfine Splitting

11 October 2007

The College of —

IAM & MARY

The College of — WILLIAM & MARY

- $\Gamma_1^{(n)}$ moments of g_1
- $\Gamma_2^{(n)}$ moments of g_2
- γ_0 forward spin polarizability; moment of $g_1 \& g_2$
- δ_{LT} forward spin polarizability; moment of $g_1 \& g_2$
- a_n OPE twist-2 coefficients
- d₂ OPE twist-3 coefficient
- f₂ OPE twist-4 coefficient
- χ_E color electric polarizability
- χ_B color magnetic polarizability
- $\alpha + \beta$ electric and magnetic polarizability
- $\Delta_1 + \Delta_2$ hyperfine splitting polarizability

- A wealth of data exists for g_1 , g_2 , F_1 and F_2
- What's still missing:
 - high x: $g_1^{p,d,n}$ and F_2^n (JLab12 and BoNuS)
 - $-g_2^p$ on the proton (transverse target)
 - precision and full kinematic coverage for 1< Q²<10 (JLab12)
 - low Q^2 evolution of $g_1^{p,d}$ (EG4)
- What's gained:
 - understanding three regions
 - Q² near 0 (χPT)
 - Q² from 0.1-10 GeV² (TMC, higher twists, resonances, the transition)
 - Q² near infinity (pQCD)