The CLAS12 Physics Program

Keith Griffioen
College of William \& Mary Helmholtz Institute Mainz for the CLAS12 Collaboration

griff@physics.wm.edu

XX International Workshop on Deep-Inelastic Scattering and Related Subjects

Bonn, 27 March 2012

JLab 12 GeV Upgrade

CLAS12 Detector

- Region 1,2,3 drift chambers
- CTOF: central time-offlight
- SVT: silicon vertex tracker
- Superconductiong solenoid (5 T)
- HTCC: high threshold Cherenkov counter
- Superconducting torus
- LTCC: low threshold Cherenkov counter
- FTOF: forward time-offlight detector
- EC: electromagnetic calorimeter
- Upgrades: RICH, CND: central neutron detector, forward tagger, micromegas

\&
 Polarized Target (L)

- 3.3 cm long NH_{3} and ND_{3} targets (plus C)
- 5 T longitudinal field, 140 GHz microwaves
- Dynamic Nuclear Polarization
- $\mathrm{P}_{\mathrm{T}}=80 \%$ for p and 40% for d
- raster over the 3 cm diameter

- HD Ice Target
- Polarize small amounts of H_{2} and D_{2}
- $o-\mathrm{H}_{2}$ and $\mathrm{p}-\mathrm{D}_{2}$ spin-exchange polarizes HD
- Frozen-spin achieved in a few months
- 0.05 K cryostat
- Low holding field (0.01-0.5 T)
- $P_{T}=75 \%$ for p and 40% for d
- Initial tests are promising for use with electron beam

Kinematic Coverage

CLAS12 Program

- Nucleon structure (p \& d targets)

Exploring projections of the Wigner Distribution

- Form Factors (FFs)
- Parton Distribution Functions (PDFs)
- Generalized Parton Distributions (GPDs)
- Transverse Momentum Distributions (TMDs)
- Nuclear QCD
-Color transparency
Quark propagation and hadronization in nuclei
-Short-range correlations
- Effects of binding on nucleon structure
- Hadron spectroscopy

Kinematics

- $Q^{2}=-(v, \mathbf{q})^{2}$: virtual photon γ^{*} 4-momentum
- x : momentum fraction
- $y=v / E_{\text {beam: }}$ fractional energy of virtual photon
- $\phi_{(h): ~ a z i m u t h a l ~ a n g l e ~ b e t w e e n ~}^{n}$ lepton scattering and finalstate particle emission planes
- $z=E_{h} / v$: fractional energy of hadron:
- $\mathbf{p}_{\text {т: }}$ quark transverse momentum
- $\mathbf{P}_{\mathrm{h} \perp}$: hadron transverse momentum
- $\mathbf{k}_{\mathbf{T}}$: transverse momentum from hadronization
- \mathbf{S}_{\perp} : target polarization $\perp \mathbf{q}$
- ϕ_{s} : angle \mathbf{S}_{\perp} makes with the scattering plane

Nucleon Structure

	Y	π^{+} / π^{-}	Π^{0}	$\mathrm{K}^{+} / \mathrm{K}^{-}$	η	$\rho / \omega / \phi$
Exclusive						
SIDIS						

Beam Polarization

Wigner Projections

$$
X\left(x, \xi, \mathbf{p}_{T}^{2}, \mathbf{b}_{T}^{2}, \mathbf{p}_{T} \cdot \mathbf{b}_{T}\right) \text { Wigner }
$$

$$
X\left(x, \xi, \mathbf{p}_{T}^{2}, \boldsymbol{\Delta}_{T}^{2}, \mathbf{p}_{T} \cdot \boldsymbol{\Delta}_{T}\right) \text { GTMD }
$$

$q(x)$

PDF

Pasquini, et al.

- x: quark momentum fraction
- $\xi: 1 / 2$ of quark momentum fraction transfer
- $\mathbf{p}_{\text {т: }}$ quark transverse momentum
- $\mathbf{b}_{\text {т: }}$ quark transverse location

CLAS12 Experiments

Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Group	Target
E12-06-108	Hard exclusive electro-production of π^{0}, η	P. Stoler	B	80	119	RICH IC Forward tagger	11	RG-A F. Sabatié	liquid H_{2}
E12-06-112	Proton's quark dynamics in SIDIS pion production	H. Avakian	A	60					
E12-06-119	Deeply Virtual Compton Scattering	F. Sabatie	A	80					
E12-09-103	Excitation of nucleon resonances at high Q^{2}	R. Gothe	B+	40					
E11-005	Hadron spectroscopy with forward tagger	M. Battaglieri	A-	119					
PR12-11-103	DVMP of ρ, ω, φ	M. Guidal		D					
E12-07-104	Neutron magnetic form factor	G. Gilfoyle	A-	30	90	Neutron detector RICH IC	11	RG-B K. Hafidi	liquid D_{2} target
PR12-11-109 (a)	Dihadron DIS production	Avakian		D					
E12-09-007a	Study of partonic distributions in SIDIS kaon production	K. Hafidi	A-	56					
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	M. Contalbrigo	A-	TBA					
11-003	DVCS on neutron target	S. Niccolai	A	90					
E12-06-109	Longitudinal Spin Structure of the Nucleon	S. Kuhn	A	80	170	Polarized target RICH IC	11	RG-C S. Kuhn	$\begin{aligned} & \mathrm{NH}_{3} \\ & \mathrm{ND}_{3} \end{aligned}$
E12-06-119(b)	DVCS on longitudinally polarized proton target	F. Sabatie	A	120					
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	H. Avakian	A-	103					
PR12-11-109 (b)	Dihadron studies on long. polarized target	H. Avakian		D					
E12-09-007(b)	Study of partonic distributions using SIDIS K production	K. Hafidi	A-	110					
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	H. Avakian	B+	103					
E12-06-106	Color transparency in exclusive vector meson production	K. Hafidi	B+	60	60		11	RG-D	Nuclear
E12-06-117	Quark propagation and hadron formation	W. Brooks	A-	60	60		11	RG-E	Nuclear
E12-10-102	Free Neutron structure at large x	S. Bueltman	A	40	40	Radial TPC	11	RG-F	Gas D_{2}
PR12-11-109	SIDIS on transverse polarized target	M. Contalbrigo		C2		Transverse target	11	RG-G	HD
TOTAL run time				1231	539				

$G_{M}{ }^{n}$

	U	L	T
U			
L			

Measure of the Neutron Magnetic FF at High Q² PR12-07-104

$$
\begin{gathered}
R=\frac{\frac{d \sigma}{d \Omega}\left(D\left(e, e^{\prime} n\right)\right)}{\frac{d \sigma}{d \Omega}\left(D\left(e, e^{\prime} p\right)\right)} \\
R=a\left(Q^{2}\right) \frac{\sigma_{m o t t}^{n}\left(G_{E}^{n}{ }^{2}+\frac{\tau_{n}}{\varepsilon_{n}} G_{M}^{n}{ }^{2}\right)\left(\frac{1}{1+\tau_{n}}\right)}{\sigma_{m o t t}^{p}\left(G_{E}^{p}{ }^{2}+\frac{\tau_{p}}{\varepsilon_{p}} G_{M}^{p}{ }^{2}\right)\left(\frac{1}{1+\tau_{p}}\right)}
\end{gathered}
$$

$\& / F_{2}$

	U	L	T
U			
L			

Structure of the Free Neutron at Large Bjorken x

PR12-06-113

$$
\begin{gathered}
\frac{F_{2}^{n}}{F_{2}^{p}}=\left(\frac{F_{2}^{n}}{F_{2}^{d}}\right)\left(\frac{F_{2}^{d}}{F_{2}^{p}}\right)_{\text {model }} \\
\mathrm{d}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{\mathrm{s}}\right) \mathrm{X} / \mathrm{d}\left(\mathrm{e}, \mathrm{e}^{\prime}\right) \mathrm{X}
\end{gathered}
$$

Radial TPC: $70<\mathrm{p}_{\mathrm{s}}<100 \mathrm{MeV} / \mathrm{c}$

Longitudinal Spin Structure of the Nucleon

$$
\frac{d \sigma}{d x d y d \psi}=\frac{2 \alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{T}+\varepsilon F_{L}+S_{\|} \lambda_{e} \sqrt{1-\varepsilon^{2}} 2 x\left(g_{1}-\gamma^{2} g_{2}\right)\right.
$$

$$
\left.\mathrm{A}_{1}=2 \mathrm{x}\left(\mathrm{~g}_{1}-\mathrm{Y}^{2} \mathrm{~g}_{2}\right) / \mathrm{F}_{\mathrm{T}} \quad-\left|S_{\perp}\right| \lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} 2 x \gamma\left(g_{1}+g_{2}\right)\right\}
$$

Inclusive double spin asymmetries, esp. at high x

DIS: ALL

Longitudinal Spin Structure of the Nucleon

Hard Exclusive Electroproduction of Π^{0} and η

PR12-06-108

$$
\frac{d \sigma}{d \Omega}=\sigma_{T}+\epsilon \sigma_{L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi \sigma_{L T}+\epsilon \cos 2 \phi \sigma_{T T}+\lambda_{e} \sqrt{2 \epsilon(1-\epsilon)} \sin \phi \sigma_{L T^{\prime}}
$$

$$
\tilde{H}(x, 0 ; 0)=\Delta q(x) \quad \text { for } \quad x>0
$$

Exclusive Vector Meson Electroproduction

$$
\frac{d \sigma}{d \Omega}=\sigma_{T}+\epsilon \sigma_{L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi \sigma_{L T}+\epsilon \cos 2 \phi \sigma_{T T}+\lambda_{e} \sqrt{2 \epsilon(1-\epsilon)} \sin \phi \sigma_{L T^{\prime}}
$$

(a) Low t; high $\mathrm{Q}^{2} ; \mathrm{x}_{1} / \mathrm{x}_{2}$ have same sign
(b) Low t; high $Q^{2} ; x_{1} / x_{2}$ have opposite sign (q-qbar)
(c) high Q^{2}; low u (i.e. backwards meson)
(d) $\rho^{+}, \rho^{0}, \phi, \omega$
(e) $2<\mathrm{W}<5 \mathrm{GeV} ; 1<\mathrm{Q}^{2}<12$ GeV^{2}; -t to $15 \mathrm{GeV}^{2}$

\&
 DVMP $\sigma_{U U} \& \sigma_{L U}$

	U	L	\top
U			
L			

Exclusive Vector Meson Electroproduction

$$
\mathbf{Q}^{2}=3.5 \mathrm{GeV}^{2}
$$

Deeply Virtual Compton Scattering

$$
\sum_{q} \frac{1}{2} \int_{-1}^{+1} d x x\left[H^{q}(x, \xi, t=0)+E^{q}(x, \xi, t=0)\right]=J_{q}
$$

DVCS
(a)

(c)

$$
\begin{gathered}
\frac{1}{2}=J_{q}+J_{g} \\
J_{q}=\frac{1}{2} \Delta \Sigma+L_{q}
\end{gathered}
$$

$$
\mathcal{H}(\xi, t)=\sum_{q}\left[\frac{e_{q}}{e}\right]\left\{i \pi\left[H^{q}(\xi, \xi, t)-H^{q}(-\xi, \xi, t)\right]\right.
$$

$$
\underbrace{\text { Compton FF } \left.\left.\quad+\mathcal{P} \int_{-1}^{+1} d x\left[\frac{1}{\xi-x}-\frac{1}{\xi+x}\right] H^{q}(x, \xi, t)\right\}\right)}
$$

$$
d \sigma^{\rightarrow}-d \sigma^{\leftarrow}=2 \cdot \mathcal{T}_{B H} \cdot \operatorname{Im}\left(\mathcal{T}_{D V C S}\right)
$$

$$
d \sigma^{\rightarrow}+d \sigma^{\leftarrow}=\left|T_{B H}\right|^{2}+2 \cdot \mathcal{T}_{B H} \cdot \operatorname{Re}\left(\mathcal{T}_{D V C S}\right)
$$

$$
\begin{aligned}
& A \simeq \Gamma_{A} \frac{s_{1}^{I}}{c_{0}^{B H}} \sin \varphi \quad s_{1, \text { unp }}^{I}=\operatorname{Im}\left\{F_{1} \mathcal{H}+\frac{x_{B}}{2-x_{B}}\left(F_{1}+F_{2}\right) \widetilde{\mathcal{H}}-\frac{t}{4 M^{2}} F_{2} \mathcal{E}\right\} \\
& s_{1, L P}^{I}=\operatorname{Im}\left\{F_{1} \tilde{\mathcal{H}}+\frac{x_{B}}{2-x_{B}}\left(F_{1}+F_{2}\right)\left(\mathcal{H}+\frac{x_{B}}{2} \mathcal{E}\right)-\frac{x_{B}}{2-x_{B}}\left(\frac{x_{B}}{2} F_{1}+\frac{t}{4 M^{2}} F_{2}\right) \widetilde{\mathcal{E}}\right\}
\end{aligned}
$$

$\&$

 DVCS: Alu \& Alu

 DVCS: Alu \& Alu}

	U	L	T
U			
L			

PR12-06-119

$\mathrm{x}=0.36$
$\mathrm{Q}^{2}=4.1 \mathrm{GeV}^{2}$
$\sin \phi$ moment

$\mathrm{t}=0.52 \mathrm{GeV}^{2}$
$\mathrm{Q}^{2}=4.1 \mathrm{GeV}^{2}$ $\sin \phi$ moment

\&

DVCS on the Neutron

$$
e d \rightarrow e^{\prime} n \gamma(p)
$$

Beam spin asymmetry for 1 of 4 t-bins

SIDIS: Fuu \& Flı

Parton Distributions from SIDIS with Kaons

$$
A_{1}^{h}\left(x, Q^{2}, z\right)=\frac{\sum_{q} e_{q}^{2} \Delta q\left(x, Q^{2}\right) D_{q}^{h}\left(z, Q^{2}\right)}{\sum_{q} e_{q}^{2} q\left(x, Q^{2}\right) D_{q}^{h}\left(z, Q^{2}\right)}=\sum_{q} \mathcal{P}_{q}^{h}\left(x, Q^{2}, z\right) \frac{\Delta q\left(x, Q^{2}\right)}{q\left(x, Q^{2}\right)}
$$

$$
\overrightarrow{\mathcal{A}}\left(x, Q^{2}\right)=\left(A_{1 p}, A_{1 p}^{\pi^{+}}, A_{1 p}^{\pi^{-}}, A_{1 p}^{K^{+}}, A_{1 p}^{K^{-}}, A_{1 p}^{K_{s}^{0}}, A_{1 d}, A_{1 d}^{\pi^{+}}, A_{1 d}^{\pi^{-}}, A_{1 d}^{K^{+}}, A_{1 d}^{K^{-}}, A_{1 d}^{K_{s}^{0}}\right)
$$

$\mathcal{P}_{q}^{h}\left(x, Q^{2}, z\right)=\frac{e_{q}^{2} q\left(x, Q^{2}\right) D_{q}^{h}\left(z, Q^{2}\right)}{\sum_{q} e_{q}^{2} q\left(x, Q^{2}\right) D_{q}^{h}\left(z, Q^{2}\right)}$
$\overrightarrow{\mathcal{Q}}\left(x, Q^{2}\right)=\left(\frac{\Delta u}{u}, \frac{\Delta d}{d}, \frac{\Delta s}{s}, \frac{\Delta \bar{u}}{\bar{u}}, \frac{\Delta d}{\bar{d}}, \frac{\Delta \bar{s}}{\bar{s}}\right)$

$\overrightarrow{\mathcal{A}}\left(x, Q^{2}\right)=\mathcal{P}\left(x, Q^{2}\right) \cdot \overrightarrow{\mathcal{Q}}\left(x, Q^{2}\right)$

$A_{1} \sim F_{L L} / F_{u U}=A_{L L}$

- Purities determined from unpolarized data
- Proton and deuteron targets
- Kaon detection is crucial
- RICH detector needed for this

Parton Distributions from SIDIS with Kaons

$0.5<z<0.6 ; Q^{2}=1.45 \& 4.5 \mathrm{GeV}^{2}$

$\mathrm{s}(\mathrm{x}) \mathrm{D}(\mathrm{z})$ for $K^{ \pm}, K_{s}{ }^{0}, \Pi^{ \pm}$

Primary TMDs

Red: T-odd

Black: survive рт integration

$\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]
$$

$$
+\left|S_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right.
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

$$
\begin{aligned}
& \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right. \\
& +\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}} \\
& +S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& +S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& \text { Leading Twist } \\
& \text { Sub-Leading Twist } \\
& \text { (extra factor of 1/Q) } \\
& 0 \text { (i.e. } R=\sigma\left\llcorner/ \sigma_{\top}=0\right. \text {) } \\
& +\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right. \\
& +\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}
\end{aligned}
$$

SIDIS Auu \& $A_{L u}$

	U	L	T
U			
L			

Proton Quark Dynamics in SIDIS π Production

$$
\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \times
$$

$$
\left\{F_{U U, T}+\epsilon F_{U U, L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\epsilon \cos 2 \phi_{h} F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \epsilon(1-\epsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}\right\}
$$

$$
f \otimes D=x \sum_{q} e_{q}^{2} \int d^{2} \mathbf{p}_{T} d^{2} \mathbf{k}_{T} \delta^{(2)}\left(\mathbf{p}_{T}-\mathbf{k}_{T}-\mathbf{P}_{h \perp} / z\right) w\left(\mathbf{p}_{T}, \mathbf{k}_{T}\right) f^{q}\left(x, p_{T}^{2}\right) D^{q}\left(z, k_{T}^{2}\right)
$$

$F_{U U, T} \sim f_{1}\left(x, p_{T}^{2}\right) \otimes D_{1}\left(z, k_{T}^{2}\right)$
$F_{U U}^{\cos 2 \phi_{h}} \sim h_{1}^{\perp}\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}\left(z, k_{T}^{2}\right)$
$F_{U U, L} \rightarrow 0$
$F_{U U}^{\cos \phi_{h}} \sim h\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}\left(z, k_{T}^{2}\right)$
$F_{L U}^{\sin \phi_{h}} \sim e\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}\left(z, k_{T}^{2}\right)$
$A_{L U}=$
$F_{L U}=\frac{\sigma^{\uparrow 0}-\sigma^{\downarrow 0}}{\sigma^{\uparrow 0}+\sigma^{\downarrow 0}}$

\&
 SIDIS Auu \& ALu

	U	L	T
U			
L			

PR12-06-112

	U	L	T
U			
L			

Boer-Mulders Function with Kaons

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right) \times \quad F_{U U}^{\cos 2 \phi_{h}} \sim h_{1}^{\perp}\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}(z, \\
& \left\{F_{U U, T}+\epsilon F_{U U, L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\epsilon \cos 2 \phi_{h} F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \epsilon(1-\epsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}\right\}
\end{aligned}
$$

Proton target K^{+}(left) \& K^{-}(right)

Deuteron target
K^{+}(left) \& K^{-}(right)

Spin-Orbit Correlations with Polarized Target (L) PR12-07-107

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}= \\
& \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{\ldots+S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]\right. \\
& \left.+S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]\right\} \quad \quad F_{L L} \sim g_{1 L}\left(x, p_{T}^{2}\right) \otimes D_{1}\left(z, k_{T}^{2}\right) \\
& F_{U L}^{\sin \phi_{h}} \sim h_{L}\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}\left(z, k_{T}^{2}\right) \\
& \text { See Avakian } \\
& \text { PRL105(2010)262002 for } \\
& \text { final CLAS data } \\
& F_{U L}^{\sin 2 \phi_{h}} \sim h_{1 L}^{\perp}\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}\left(z, k_{T}^{2}\right) \\
& F_{L L}^{\cos \phi_{h}} \sim e_{L}\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}\left(z, k_{T}^{2}\right)
\end{aligned}
$$

\title{

風
 | f_{1} | | h_{1}^{\perp} | f_{1} | | $h_{1}^{\perp}(e)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $g_{1 L}$ | $h_{1 L}^{\perp}$ | | $g_{1 L}$ | $h_{1 L}^{\perp}\left(e_{L}\right)$ |
| $f_{1 T}^{\perp}$ | $g_{1 T}$ | $h_{1}, h_{1 T}^{\perp}$ | $f_{1 T}^{\perp}$ | $g_{1 T}$ | $h_{1}, h_{1 T}^{\perp}$ |

Spin-Orbit Correlations with Polarized Target (L) PR12-07-107

proton

See Avakian PRL105(2010)262002 for final CLAS data

$$
\begin{aligned}
& F_{L L} \sim g_{1 L}\left(x, p_{T}^{2}\right) \otimes D_{1}\left(z, k_{T}^{2}\right) \\
& F_{L L}^{\cos \phi_{h}} \sim e_{L}\left(x, p_{T}^{2}\right) \otimes H_{1}^{\perp}\left(z, k_{T}^{2}\right)
\end{aligned}
$$

$\Delta d / d$ and $\Delta u / u$

析
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">f_{1}</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">$h_{\frac{1}{\perp}}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">${ }_{1}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">h_{1}^{\perp}</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$g_{1 L}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$h_{\text {1L }}^{\text {L }}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$h_{1 L}^{1}$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$f_{1 T}^{\text {¢ }}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$g_{1 T}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$h_{1}, h_{1 T}^{1}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">f_{17}^{1}</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| f_{1} | | $h_{\frac{1}{\perp}}$ | ${ }_{1}$ | | | h_{1}^{\perp} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $g_{1 L}$ | $h_{\text {1L }}^{\text {L }}$ | | | | $h_{1 L}^{1}$ |
| $f_{1 T}^{\text {¢ }}$ | $g_{1 T}$ | $h_{1}, h_{1 T}^{1}$ | f_{17}^{1} | | | |</table-markdown></div>
 SIDIS: All \& Aul

Spin-Orbit Correlations with Kaons (L)

SIDIS: Aul, $A_{l u}, A_{l l}$

Dihadron Electroproduction in DIS

$\frac{d \sigma}{d x d y d \psi d z d \phi_{R} d M_{h}^{2} d \cos \theta}=$

$$
\begin{aligned}
& \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{R} F_{U U}^{\cos \phi_{R}}\right. \\
& \quad+\varepsilon \cos \left(2 \phi_{R}\right) F_{U U}^{\cos 2 \phi_{R}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{R} F_{L U}^{\sin \phi_{R}} \\
& \quad+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{R} F_{U L}^{\sin \phi_{R}}+\varepsilon \sin \left(2 \phi_{R}\right) F_{U L}^{\sin 2 \phi_{R}}\right] \\
& \left.\quad+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{R} F_{L L}^{\cos \phi_{R}}\right]\right\}
\end{aligned}
$$

$$
F_{L L}^{\cos \phi_{R}}=-x \frac{|\boldsymbol{R}| \sin \theta}{Q} \frac{1}{z} g_{1}^{q}(x) \widetilde{D}^{\Varangle q}\left(z, \cos \theta, M_{h}\right)
$$

$$
F_{U U, T}=x f_{1}^{q}(x) D_{1}^{q}\left(z, \cos \theta, M_{h}\right)
$$

$$
F_{U U}^{\cos \phi_{R}}=-x \frac{|\boldsymbol{R}| \sin \theta}{Q} \frac{1}{z} f_{1}^{q}(x) \widetilde{D}^{\Varangle q}\left(z, \cos \theta, M_{h}\right)
$$

$$
F_{L L}=x g_{1}^{q}(x) D_{1}^{q}\left(z, \cos \theta, M_{h}\right)
$$

$$
F_{U L}^{\sin \phi_{R}}=-x \frac{|\boldsymbol{R}| \sin \theta}{Q}\left[\frac{M}{M_{h}} x h_{L}^{q}(x) H_{1}^{\Varangle q}\left(z, \cos \theta, M_{h}\right)+\frac{1}{z} g_{1}^{q}(x) \widetilde{G}^{\Varangle q}\left(z, \cos \theta, M_{h}\right)\right]
$$

$$
F_{L U}^{\sin \phi_{R}}=-x \frac{|\boldsymbol{R}| \sin \theta}{Q}\left[\frac{M}{M_{h}} x e^{q}(x) H_{1}^{\Varangle q}\left(z, \cos \theta, M_{h}\right)+\frac{1}{z} f_{1}^{q}(x) \widetilde{G}^{\Varangle q}\left(z, \cos \theta, M_{h}\right)\right]
$$

Dihadron Electroproduction in DIS
PR12-11-109
e, $h_{L} \sim$ twist-3
$p: \pi^{+} \pi^{-} e(x) \quad$ yellow: spread in models $\mathrm{p}: \mathrm{K}^{+} \pi^{-} \mathrm{e}(\mathrm{x})$

$d: \pi^{+} \pi^{-} e(x) \quad e(x)$ related to x symmetry breaking
$d: \pi^{+} \pi^{-} h_{L}(x)$

SIDIS with Transversely Polarized Target (T)

$\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$

$$
\begin{aligned}
& \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{\ldots+\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right.\right. \\
& +\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \\
& \left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right] \\
& +\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right. \\
& \left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\},
\end{aligned}
$$

$$
F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)} \sim g_{1 T}\left(z, p_{T}^{2}\right) \otimes D_{1}\left(z, k_{T}^{2}\right)
$$

\&

 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">f_{1}</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">h_{1}^{\perp}</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$g_{1 L}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$h_{1 L}^{\perp}$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$f_{1 T}^{\perp}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$g_{1 T}$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$h_{1}, h_{1 T}^{\perp}$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| f_{1} | | h_{1}^{\perp} |
| :---: | :---: | :---: |
| | $g_{1 L}$ | $h_{1 L}^{\perp}$ |
| $f_{1 T}^{\perp}$ | $g_{1 T}$ | $h_{1}, h_{1 T}^{\perp}$ |</table-markdown></div>
 SIDIS: Aut \& Alt

SIDIS with Transversely Polarized Target (T)

PR12-11-111 proton

Conclusions

- CLAS12 is scheduled to begin data-taking in mid-2015
- A diverse program of nucleon structure function measurements using p and d targets, U and L polarized beams, U, L and T polarized targets are approved.
- This program centers on DIS, SIDIS, DVCS and DVMP.
- The combined weight of these experiments will significantly enhance our understanding of GPDs, TMDs and PDFs.

