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Scattering

Most of what we know about the world comes from scattering 
experiments. 

Rouen Cathedral, Claude Monet, ~1893
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Scattering
Scattered light forms the image of a hand 
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Scattering
Scattered light forms the image of a hand on a detector 
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Fraunhofer Diffraction

• Incident wave is monochromatic and parallel
• Image is far away 
• Single slit:  a sin θn = n λ  gives interference minima
• The size a can be determined if λ < a
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Size of the Proton

r ~ 1 fm = 10-15 m

• We need a wave with < 1 fm wavelength
• Why not use electrons?
• DeBroglie wavelength is λ=h/p 
• pc=hc/λ = (1.24 GeV-fm)/(1 fm) = 1.24 GeV
• Electron mass me = 0.511 MeV is negligible
• Electron accelerators are required

• Jefferson Lab: Ebeam = 6 GeV
• DESY: Ebeam = 27 GeV
• SLAC: Ebeam = 50 GeV
• CERN: Ebeam = 200 GeV for muons
• Fermilab: Ebeam = 500 GeV for muons
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Scattering from a Sphere

plane wave 

additional
path length

form factor

Interference 
pattern is the 
Fourier transform 
of the density
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Cross Section

Probability of scattering = Nσ/A 

Area AArea σ
‘Tiny probe particle’

We generalize σ to be an effective
area that for a given scattering 
probability.

Probability of scattering = Nscat / Ninc

N = NA ρ t A / M NA = 6.02x1023  ρ = target density 

 t = target thickness  M = molar mass
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Point Cross Sections

E is the incident and E’ 
the scattered energy

α ~ 1/137 is the fine 
structure constant

for an electron on a 
charge-1 target

for a relativistic 
electron on a 
charge-1 target

recoil
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Form Factors

Fourier expansion of the form factor 

Differential cross section for 
an extended object

Point cross section Form factor
(internal structure)

RMS particle radius

Density normalization

Form factor for ρ(r)=e-Λq
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Elastic ep Scattering

Point cross section

M is the 
mass of the 
proton

Magnetic form factor
Electric form factor

Q2 is 
momentum 
transfer 
squared 
minus energy 
transfer 
squared

Dipole form factor
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Proton Form Factors
Arrington, Melnitchouk, Tjon, PRC76(07)035205 

Chambers & Hofstadter, PR103(56)1454 

Nobel Prize
Current 
world data

Surprise
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Quarks

Because the proton 
has a form factor, we 
know it is made of 
smaller building blocks. 

p: uud
n: ddu
π+: ud
Λ: uds
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Forces

Coulomb force
1 charge & 1 anticharge
1 photon with no charge

Leinweber, 
Lattice QCD 
simulation

+ _photon

gluon

Strong (nuclear) force
3 charges & 3 anticharges
8 gluons with mixed charge and anticharge

Forces are carried by spontaneously 
created messenger particles

ΔEΔt ~ h 
F ~ Δp/Δt
r ~ c Δt
ΔE = Δp
F ~ 1/r2QED

QCD
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Hadrons

hadron: anything with a quark in it
meson: quark+antiquark
baryon: 3 quarks

Atoms are 
neutral wrt 
electric charge
and hadrons 
are neutral wrt 
color charge

Updated cartoon 
of the inside of a 
proton
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Quantum Weirdness

16

• When combining quantum mechanics with relativity, we give 
up the number 1.
• ‘Empty’ space teems with spontaneously created virtual 
particles.
• All real particles are clothed by a multitude of virtual ones
• Exchanges of virtual particles is how a force is felt between 
two real particles
• Although this solves the problem of action at a distance, we 
are left with unavoidable infinities.

Fragmentation
Hadronization

struck
quark

target
remnant

du uud

d

ss u
_ _ _

K0 K+ π0n
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Relativistic Kinematics

θ E 

 E’ 4-vectors:
k = (E,0,0,E)
k’ = (E’,E’sinθ,0,E’cosθ)
p = (M,0,0,0)
q = (ν, q) = k - k’

Lorentz invariants:
q•q = -Q2

p•q/m = ν
(p+q)2 = W 2

(k+p) 2 = s
-q•q/(2p•q) = x
p•q/p•k = y

=1 for elastic scattering
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How to Measure Quark Spin
At high energies only one dimension is important

Conserve angular 
momentum:
Se = +1/2
Se = -1/2; Sγ = 1
Sq = -1/2; Sγ = 1
Sq = +1/2
Sq ≠ +3/2 ever

Electrons can only scatter from quarks with opposite spin.  
The difference between electron scattering for spins 
opposite and along the proton’s spin counts the quarks 
with spin along and opposite to the proton’s spin.
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Deep Inelastic Scattering

Q2 increases

p
xp

(1-x)p

‘Elastic’ e-quark scattering:
-q•q/(2xp•q) = 1, ∴
x = Q2/2Mν is the fraction 
of the proton momentum
carried by the struck 
quark. 
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F2
p(x,Q2) and g1

p
 (x,Q2)
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Parton Distribution Functions
Fits to all the world’s data yield the probability distributions for 
finding a quark or a gluon with momentum fraction x.

CTEQ fits
area gives <x>i
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Polarized PDFs

22

Q2 evolution is used to 
determine Δg

DSSV fits;
area gives <Δx>i

Large uncertainties 
remain
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DSSV PDFs

23

• Significant contributions from x<0.001
• ΔG vanishes with increasing Q2

• At Q2=4 GeV2, Lz = 0.474 (large)
• Errors on ΔG are still very large

Way too
naive

More
realistic



23 November 2010 Calvin College

Semi-Inclusive DIS

24

Azimuthal distributions of hadrons that contain the struck 
quark are sensitive to orbital angular momentum.  These 
measurements are in progress.

L=1 L=2

Orbitals for H 
illustrate that angular     
distributions imply
            L≠0
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What Can JLab Offer?

Jefferson Lab in Newport News, Virginia is a precise electron 
microscope for viewing the guts of protons and neutrons 

W* (GeV)
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Deep Inelastic (W>2 GeV)

Jefferson Lab:
•Continuous beam
•High Luminosity
•High Polarization
•6 GeV beams
•12 GeV beams in ’14 
•3 experimental halls
•0.01<Q2<6 GeV2

•0.8<W<3 GeV
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Jefferson Lab Accelerator

• Electron beams up to 6 GeV with >80% longitudinal 
polarization

• Beam currents of 1-50 nA in Hall B
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JLab Experimental Halls 

Hall A

Hall B

Hall C

• 3 experimental halls
• Hall A: 2 high-resolution 
spectrometers
• Hall B: 1 large-acceptance 
spectrometer
•Hall C: 1 electron & 1 proton 
spectrometer
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CLAS Detectors
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CLAS Detectors
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CLAS Detectors
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CLAS Photo
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Polarized Target

• Dynamic nuclear polarization of NH3 and ND3

• Polarizations of 70-80% for p and 20-30% for d
• Luminosity 1035 cm-2s-1
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Polarized Target

Dynamic Nuclear 
Polarization:
•Freeze ammonia
•Make it paramagnetic 
through irradiation
•Put it into a 5 T 
magnetic field
•Drive transitions with 
microwaves
•Protons will 
accumulate into a 
single hyperfine state 
with spins aligned
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Asymmetries and g1/F1

Beam polarization

small

Dilution factor:
ratio of scattering 
from protons to 
everything else in 
the target

Target polarization

tiny
small

Depolarization factor (photons 
are not in the beam direction)
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             g1
p(x,Q2)
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g1
p(x,Q2) with JLab CLAS
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EG1b g1
p

Bjorken x
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RYg 1

P

Q2=0.07

Q2=4
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Regions of Q2

scaling: lnQ2

higher twist: (1/Q2)n

χPT: (Q2)n

no nice expansion
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Sum Rules

Energy-Weighted Sum Rule

GDH Sum Rule

S(F) = Σa(Ea-E0)|<a|F|0>|2 = <0|[F,[H,F]|0>

Sum over excited states is tied to properties of the ground state

at low Q2

anomalous
magnetic
moment



23 November 2010 Calvin College 40

CLAS Moments Γ1
p,d

low Q2 fit

GDH + χpT
PRELIMINARY
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EG4 Γ1
p Expected
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Hydrogen Hyperfine Splitting
Carlson, Nazaryan, Griffioen, PRA78(08)022517

21 cm
line
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Hydrogen Hyperfine Splitting

Δpol = 1.88(64) ppm from CLAS

kinematic 
factors

Consistent within 
a half ppm
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Muonic Hydrogen Lamb Shift

2S1/2F=1 to 2P3/2F=2 transition: 49881.88(76) GHz

R. Pohl, Max Planck Inst. Quantenoptik, Garching, Germany (2010)

Muonic hydrogen        contains 
a muon instead of an electron. 

A muon is 207 times 
heavier than an electron.  
Therefore it spends more 
time inside the proton. Finite size 

correction to the 
Lamb shift ΔE ~ 
rrms2 |ψ(0)|2

rrms =0.84184(67) fm

10 times more accurate than all other measurements
4% smaller than accepted radius!

(µp)
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Where We Stand

45

known quite
well:  0.13

poorly known
but likely small:
-0.1

completely
unmeasured but
likely large: 0.47

0.84184(67) fm 
R. Pohl, µp Lamb shift

0.8768(69) fm 
CODATA, mostly 
H spectroscopy

0.895(18) fm 
I. Sick, from 
form factors
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Conclusions

After 50 years of studying the 
proton’s internal structure, we 
still have a long way to go. 


