

Spin Structure Functions at CLAS

K. Griffioen College of William & Mary for the CLAS Collaboration griff@physics.wm.edu

Presented by J. Pierce University of Virginia WILLIAM & MARY Spin Structure with CLAS

2

The College of —

- EG1: 0.05<Q²<3.5 GeV² - data (2001); anal (2007)
- EG4: 0.01<Q²<1 GeV² - data (2006); anal (2008)
- EG12: 0.5<Q²<7 GeV² - data (2012?); anal (2014)

CEBAF Accelerator

- Electron beams up to 5.7 GeV with >80% longitudinal polarization
- Beam currents of 1-50 nA in Hall B

The College of — WILLIAM & MARY

Polarized Target

- Dynamic nuclear polarization of NH₃ and ND₃
- Polarizations of 70-80% for p and 20-30% for d
- Luminosity 10³⁵ cm⁻²s⁻¹

$$A_{\parallel} = rac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow} + \sigma^{\uparrow\uparrow}}$$

$$A_{\parallel} = D(A_1 + \eta A_2)$$

We can extract A_1 using a model for A_2 (small), or g_1 using a model for g_2 (small)

We can extract A_1 and A_2 from A_{\parallel} at multiple values of $\eta(E_{beam})$

$${}_{1} = \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}}$$
$$= \frac{g_{1}(x, Q^{2}) - \gamma^{2}g_{2}(x, Q^{2})}{F_{1}(x, Q^{2})}$$

$$A_{2} = \frac{2\sigma_{LT}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}}$$

$$=\frac{\gamma[g_1(x,Q^2)+g_2(x,Q^2)]}{F_1(x,Q^2)}$$

A

EG12

EG1

EG4

- Overlapping colors correspond to different beam energies
- CLAS measures a large range in x at each fixed Q²
- Different E_{beam} for fixed (x,Q²) allows separation of $A_1 \& A_2$

EG1 g_1^p (Q²<0.7)

- At low Q^2 the Δ resonance drives g_1 negative
- Extensive x-range at fixed Q² allows integration over x
- Red curve is the EG1 model used for radiative corrections

- At higher Q², g₁ becomes positive everywhere
- g_1/F_1 falls far below the DIS extrapolation at low Q^2
- Red curve is the EG1 model (dashed: DIS extrapolation)

- Error envelopes for PDFs from LSS05 global analysis (green)
- CLAS EG1 data significantly improve errors on Δu , Δd , Δx and ΔG (blue)
- CLAS EG12 (12 GeV upgrade) will especially improve ∆G (red)

EG1 Extraction of A₂

- Analysis is in progress to obtain both A₁ and A₂ from the EG1 data
- Intercept gives A₁
- Slope gives A₂
- A₂ is larger than EG1 model (MAID, AO) as is Hall C RSS experiment

A₁ Data from EG1

17 April 2007

Duality

17 April 2007

DIS2007

5

$$\left[\frac{g_1(x,Q^2)}{F_1(x,Q^2)}\right]_{\exp} F_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{\exp} = g_1(x,Q^2)_{LT} + h^{g_1}(x)/Q^2$$

The College of -

ILLIAM & MARY

 $1 < Q^2 < 5 \ {
m GeV}^2, \quad 2 < W < 3.5 \ {
m GeV}$ $\int_0^1 dx h^{g_1}(x) = rac{4}{9} M^2 (d_2 + f_2)$

•F₁ from NMC fit to F₂ and 1998 SLAC fit to R
•g₁ (leading twist) from NLO fit at high Q²
•h from fit to all data, especially CLAS in the pre-asymptotic region
•d₂: twist-3, f₂: twist-4

17 April 2007

WILLIAM & MARY Bjorken Sum & Higher Twist

n-di

0.2

0.15

0.1

This work

CLAS EG1a HERMES E143

> Bernard et al

JLab Hall A/Hall B

LT

Ji et al

Burkert

-loffe

Soffer-Teryaev (2004)

$$\Gamma_1^{(n)} = \int_0^1 x^n g_1(x, Q^2) dx = \frac{a_n}{2}, \quad n = 0, 2, 4, \dots,$$

$$\Gamma_2^{(n)} = \int_0^1 x^n g_2(x, Q^2) dx = \frac{1}{2} \frac{n}{n+1} (d_n - a_n), \quad n = 2, 4, \dots,$$

Bjorken Sum Rule:

$$\Gamma_{1}^{p-n} = \frac{g_{A}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} \right] + \frac{\mu_{4}^{p-n}}{Q^{2}} + \dots$$

$$\mu_{4}^{p-n} = \frac{M^{2}}{9} \left(a_{2}^{p-n} + 4d_{2}^{p-n} + 4f_{2}^{p-n} \right)$$

$$d_{2}^{p-n} = \int_{0}^{1} dx \ x^{2} \left(2g_{1}^{p-n} + 3g_{2}^{p-n} \right)$$

$$\int_{0}^{0.3} \underbrace{\text{EGIb, 3 par. fit}}_{0} \underbrace{\text{Bag model } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Instanton (2002)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Inst. (2006)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Inst. (2006)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Lab A/B, 4 par. fit } \text{Inst. (2006)}}_{1 \text{ Lab A/B, 4 par. fit } \text{Lab A/B, 4$$

$$\gamma_0(Q^2) = \frac{4e^2 M^2}{\pi Q^6} \int_0^{x_0} dx \, x^2 \left\{ g_1(x, Q^2) - \gamma^2 g_2(x, Q^2) \right\}$$

WILLIAM & MARY Hydrogen Hyperfine Splitting

 $E_{\rm HFS}(e^-p) = 1.4204057517667(9) \,{\rm GHz} = (1 + \Delta_{QED} + \Delta_R^p + \Delta_S) E_F^p$

 $\Delta_{S} = -38.62(16) \text{ ppm } \Delta_{Z} = -41.0(5) \text{ ppm } \Delta_{\text{pol}} = 2.38(58) \text{ ppm}$ $\Delta_{\text{pol}} = \frac{\alpha m_{e}}{2\pi (1+\kappa)M} (\bar{\Delta_{1}} + \Delta_{2}) = (0.2264798 \text{ ppm}) (\Delta_{1} + \Delta_{2})$

$$B_1 = \int_0^{x_{\rm th}} dx \,\beta(\tau) g_1(x, Q^2) \,,$$
$$B_2 = \int_0^{x_{\rm th}} dx \,\beta_2(\tau) g_2(x, Q^2) \,,$$

$$\beta(\tau) = \frac{4}{9} \left(-3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \right)$$

$$\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)},$$

Comparisons between $\Gamma_1 = \int g_1 dx$ and $B_1 = \int \beta_1 g_1 dx$ and between $\Gamma_2 = \int g_2 dx$ and $B_2 = \int \beta_2 g_2 dx$

The College of _____

WILLIAM & MARY

PRL96,163001

Nucleon structure is the largest uncertainty in calculating HFS. Better g_1 , g_2 , G_M , G_E data at low Q^2 required to resolve discrepancy.

EG4 Expectations

EG12 Expectations

Expected Γ_1^d for 50 days. CLAS12 data (Wmin=2 GeV)

CLAS, past, present and future, provides high-quality A_{\parallel} data over a large and continuous range in x and Q² that

- significantly improve global PDF fits to Δu , Δd , Δs and ΔG
- precisely determine higher twists
- rigorously probe duality over a wide Q² range
- quantitatively test χPT calculations at low Q^2
- accurately yield the polarizability correction to hydrogen hyperfine splittings

NB The scope of this talk was limited to the inclusive measurements. A number of semi-inclusive and exclusive measurements are also in progress using the same data sets (see J. Pierce's talk in this conference).