

The Bound Nucleon Structure Experiment (BoNuS) at CLAS

Keith Griffioen College of William & Mary

griff@physics.wm.edu

CLAS12 2nd European Workshop Paris, France 10 March 2011

10 March 2011

CLAS12 2nd European Workshop

A CLAS Experiment with RTPC

- **BoNuS**
- Bound Nucleon Structure Experiment
- d(e,e'p_s)X [(deep) inelastic]
- deuterium target, spectator proton
- $70 < p_s < 180 \text{ MeV/c}$
- JLab Hall B CLAS with an RTPC
- search for F_2^n at high x

N.Baillie, S. Tkachenko,

W. Melnitchouk, K. Griffioen, S. Kuhn, C. Keppel, M.E. Christy,

H. Fenker, J. Zhang, S. Bültmann

WILLIAM & MARY
PWIA Spectator Formalism

$$\frac{d\sigma}{dx^*dQ^2} = \frac{4\pi\alpha_{\rm EM}^2}{x^*Q^4} \left[\frac{y^{-2}}{2(1+R)} + (1-y_{-1}) + \frac{M^{*2}x^{*2}y^{-2}}{2(1+R)} + (1-y_{-1}) + \frac{M^{*2}x^{*2}y^{-2}}{Q^2} \frac{1-R}{1+R} \right] F_2(x^*, \alpha_s, p_T, Q^2) + \frac{M^{*2}x^{*2}y^{-2}}{Q^2} \frac{1-R}{1+R} = F_2(x^*, \alpha_s, p_T, Q^2) + \frac{M^{*2}x^{*2}y^{-2}}{Q^2} \frac{1-R}{1+R} = F_2(x^*, \alpha_s, p_T, Q^2) + \frac{M^{*2}x^{*2}y^{-2}}{Q^2} + \frac{1-R}{Q^2} + \frac{1-R$$

The College of -

WILLIAM & MARY

Off-Shell Structure Functions

Target Fragmentation

8 p₂=0.3 GeV/c $= (\sigma_{tf} + \sigma_{sp}^{PWIA}) / \sigma_{sp}^{PWIA}$ p₂=0.4 GeV/c 6 5 p₂=0.5 GeV/c 4 x = 0.23 $Q^{2}=5 (GeV/c)^{2}$ 2 Ľ 0.4 0.8 0.2 0.6 1.0 $\cos \theta_2$ $\cos \Theta_{pq}$

Palli et al, PRC80(09)054610

- target fragmentation enhances the proton yield only at forward angles (cos Θ_{pq} >0.6)
- this can be ignored

BoNuS Experiment

- Bound Nucleon Structure Experiment
- Hall B, JLab, CLAS
- d(e,e'p_s)X with 0.07 < p_s < 0.15 GeV/c
- E_{beam}=1.1, 2.1, 4.2, 5.3 GeV
- $\bullet \mbox{Radial}$ time projection chamber for p_s
- Data taking in 2005

10 March 2011

BoNuS RTPC Performance

The College of _______ WILLIAM & MARY

- upper left: dE/dx vs. p/Z for He target
- lower left: dE/dx vs. p for deuterium target
- below RTPC+CLAS resolution for common e⁻ events

BoNuS Kinematic Correction

- Very Important Protons 70<ps<100 MeV/c
- Corrections make resonances stand out
- F₂ⁿ/F₂^p can be measured at high x*

- The Ratio Method
 - * measure tagged counts divided by inclusive counts
 - * correct this ratio for backgrounds
 - \star one scale factor gives F_2^n/F_2^d
- The Monte Carlo Method
 - measure tagged counts
 - divide by spectator model Monte Carlo results
 - \star multiply by $F_{2^{n}}$ used in the model
- The two methods have different systematic errors, but should give the same result.

Accidental Backgrounds

- Z is the position along the beam direction
- Tracking of the electron gives Z(CLAS)
- Tracking of the spectator proton gives Z(BoNuS)
- ΔZ=Z(CLAS)-Z(BoNuS) shows a coincidence peak and a triangular background
- Fits to the triangular background allows us to measure backgrounds underneath the peak
- Blue area = $R_{bg} x$ Pink area
- R_{bg} is independent of kinematics

CLAS Detection Efficiency

- Top Row: Raw inclusive ed scattering in CLAS [vs. W, 4 plots in Q²]
- Middle Row: Inclusive ed radiated cross sections from world data fit
- Bottom Row: Relative efficiency ε (*i.e.* Top Row / Middle Row)

- *R*_{corr} is the tagged to untagged ratio corrected for CLAS efficiency and accidentals
- C_{e^+} and C_{π} are corrections for pair-symmetric and π^- backgrounds
- *r*_{rc} is the radiative correction
- *n* is an overall normalization constant that ensures agreement with world data at *x*=0.3

10 March 2011

CLAS12 2nd European Workshop

Corrections Ce+, Cp-, and rrc

- *C*_{e+} correction < 2 %
- C_{π} correction < 1/2 %
- *r*_{rc} correction < 10% in the region 1.2<W<2.7 GeV
- $1/n = 0.02535 \pm 3.37\%$

Kinematic Coverage

Systematic Errors

- Full analysis of F₂ⁿ is done after shifting or broadening various quantities
- $\Delta F_{2^n} = 0$ at x=0.3 where normalization takes place (total value there is interpolated)
- Blue line, all changes are made at once; total error rises from 1% to 4% vs x.
 CLAS12 2nd European Workshop 18

BoNuS F₂ⁿ

Monte Carlo Method

Left: Black=raw tagged data; blue=accidental subtracted data; red=elastic and radiative tail

10 March 2011

Data / MC vs W* for Different ps

2.6

2.6

- **Deviations from** ٠ unity at low W* comes from difficulties of getting the model right for the resonances
- Generally the • ratio is close to unity
- Perhaps some • effects at high ps

cos0 distributions / MC

- At low ps the data agree with the spectator model quite well
- At higher p_s the distributions deviate significantly from unity, indicating that VIP particles should have p_s<100 MeV/c

10 March 2011

F_2^n for various p_s

- Data show resonance peaks.
- Data agree quite well with resonance model of world data
- Dependence on spectator momentum is slight

Final Data

Various data compared to a state of the art nuclear physics extraction of neutron structure functions from deuterium (red points, Malace, et al.)

BoNuS F2n/F2p

- F_2^n/F_2^n vs. x
- Curves are CETQ error bands
- CETQ cuts off at low x because Q² is too low
- Lower cuts in W* imply higher x but the inclusion of resonance contributions.
- Results are consistent with CETQ trends at high x.

- BoNuS:
 - we have measured F_{2^n} on a "free" neutron target
 - no effects from Fermi motion and the EMC Effect
 - no evidence for off-shell structure for p_s <140 MeV/c
 - $F_2^{n/}F_2^p$ behaves at high x much like CETQ high-x fits
 - F₂ⁿ resonance data will significantly improve the world data set, which up to now came from d with nuclear corrections
- CLAS12:
 - new BoNuS proposal is approved