

The Physics Behind the Bound Nucleon Structure Experiment's (BoNuS) PRL

Keith Griffioen
College of William & Mary

griff@physics.wm.edu

CLAS Collaboration Meeting
Jefferson Lab
13 October 2011

Paper Submitted to PRL

Measurement of the neutron F_2 structure function via spectator tagging with CLAS

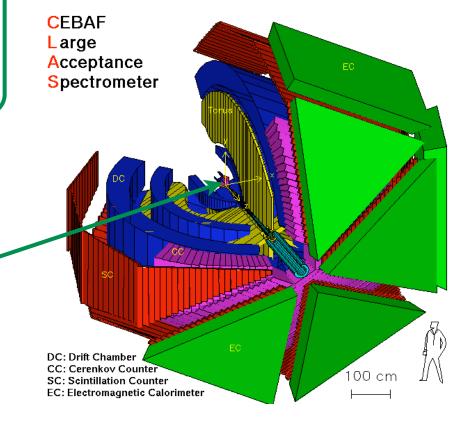
```
N. Baillie, 44, 16 S. Tkachenko, 33, 43 J. Zhang, 33, 39 P. Bosted, 39, 44 S. Bültmann, 33 M.E. Christy, 16 H. Fenker, 39
 K.A. Griffioen, 44 C.E. Keppel, 16 S.E. Kuhn, 33 W. Melnitchouk, 39 V. Tvaskis, 39 K.P. Adhikari, 33 D. Adikaram, 33
         M. Aghasyan, <sup>21</sup> M.J. Amaryan, <sup>33</sup> M. Anghinolfi, <sup>22</sup> J. Arrington, <sup>1</sup> H. Avakian, <sup>39</sup> H. Baghdasaryan, <sup>43,33</sup>
M. Battaglieri, <sup>22</sup> A.S. Biselli, <sup>11, 5</sup> D. Branford, <sup>10</sup> W.J. Briscoe, <sup>15</sup> W.K. Brooks, <sup>41, 39</sup> V.D. Burkert, <sup>39</sup> D.S. Carman, <sup>39</sup>
      A. Celentano, <sup>22</sup> S. Chandavar, <sup>32</sup> G. Charles, <sup>7</sup> P.L. Cole, <sup>18</sup> M. Contalbrigo, <sup>20</sup> V. Crede, <sup>13</sup> A. D'Angelo, <sup>23, 36</sup>
       A. Daniel,<sup>32</sup> N. Dashyan,<sup>45</sup> R. De Vita,<sup>22</sup> E. De Sanctis,<sup>21</sup> A. Deur,<sup>39</sup> B. Dey,<sup>5</sup> C. Djalali,<sup>38</sup> G. Dodge,<sup>33</sup>
     J. Domingo,<sup>39</sup> D. Doughty,<sup>8,39</sup> R. Dupre,<sup>1</sup> D. Dutta,<sup>31</sup> R. Ent,<sup>39</sup> H. Egiyan,<sup>39,29</sup> A. El Alaoui,<sup>1</sup> L. El Fassi,<sup>1</sup>
     L. Elouadrhiri, <sup>39</sup> P. Eugenio, <sup>13</sup> G. Fedotov, <sup>38, 37</sup> S. Fegan, <sup>42</sup> A. Fradi, <sup>24</sup> M.Y. Gabrielyan, <sup>12</sup> N. Gevorgyan, <sup>45</sup>
       G.P. Gilfoyle, <sup>35</sup> K.L. Giovanetti, <sup>26</sup> F.X. Girod, <sup>39</sup> W. Gohn, <sup>9</sup> E. Golovatch, <sup>37</sup> R.W. Gothe, <sup>38</sup> L. Graham, <sup>38</sup>
      B. Guegan, <sup>24</sup> M. Guidal, <sup>24</sup> N. Guler, <sup>33,*</sup> L. Guo, <sup>12,39</sup> K. Hafidi, <sup>1</sup> D. Heddle, <sup>8,39</sup> K. Hicks, <sup>32</sup> M. Holtrop, <sup>29</sup>
      E. Hungerford, <sup>17</sup> C.E. Hyde, <sup>33</sup> Y. Ilieva, <sup>38, 15</sup> D.G. Ireland, <sup>42</sup> M. Ispiryan, <sup>17</sup> E.L. Isupov, <sup>37</sup> S.S. Jawalkar, <sup>44</sup>
  H.S. Jo,<sup>24</sup> N. Kalantarians,<sup>43</sup> M. Khandaker,<sup>30</sup> P. Khetarpal,<sup>12</sup> A. Kim,<sup>27</sup> W. Kim,<sup>27</sup> P.M. King,<sup>19,32</sup> A. Klein,<sup>33</sup>
         H.Y. Lu,<sup>5,38</sup> I.J.D. MacGregor,<sup>42</sup> Y. Mao,<sup>38</sup> N. Markov,<sup>9</sup> B. McKinnon,<sup>42</sup> T. Mineeva,<sup>9</sup> B. Morrison,<sup>2</sup>
      H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, A. Ni, S. Niccolai, I. Niculescu, G. Niculescu, G. Niculescu,
 M. Osipenko, <sup>22</sup> A.I. Ostrovidov, <sup>13</sup> L. Pappalardo, <sup>20</sup> K. Park, <sup>39,27</sup> S. Park, <sup>13</sup> E. Pasyuk, <sup>39,2</sup> S. Anefalos Pereira, <sup>21</sup>
     S. Pisano, <sup>21, 24</sup> S. Pozdniakov, <sup>25</sup> J.W. Price, <sup>3</sup> S. Procureur, <sup>7</sup> Y. Prok, <sup>8, 43</sup> D. Protopopescu, <sup>42</sup> B.A. Raue, <sup>12, 39</sup>
       G. Ricco, <sup>22, 14</sup> D. Rimal, <sup>12</sup> M. Ripani, <sup>22</sup> G. Rosner, <sup>10</sup> P. Rossi, <sup>21</sup> F. Sabatié, <sup>7</sup> M.S. Saini, <sup>13</sup> C. Salgado, <sup>30</sup>
        D. Schott, <sup>12</sup> R.A. Schumacher, <sup>5</sup> E. Seder, <sup>9</sup> Y.G. Sharabian, <sup>39</sup> D.I. Sober, <sup>6</sup> D. Sokhan, <sup>24</sup> S. Stepanyan, <sup>39</sup>
           S.S. Stepanyan, <sup>27</sup> P. Stoler, <sup>34</sup> S. Strauch, <sup>38</sup> M. Taiuti, <sup>14</sup> W. Tang, <sup>32</sup> M. Ungaro, <sup>9</sup> M.F. Vineyard, <sup>40</sup>
      E. Voutier, <sup>28</sup> D.P. Watts, <sup>10</sup> L.B. Weinstein, <sup>33</sup> D.P. Weygand, <sup>39</sup> M.H. Wood, <sup>4,38</sup> L. Zana, <sup>29</sup> and B. Zhao <sup>44,9</sup>
```


arxiv.org/abs/1110.2770

Measurement of the neutron F_2 structure function via spectator tagging with CLAS

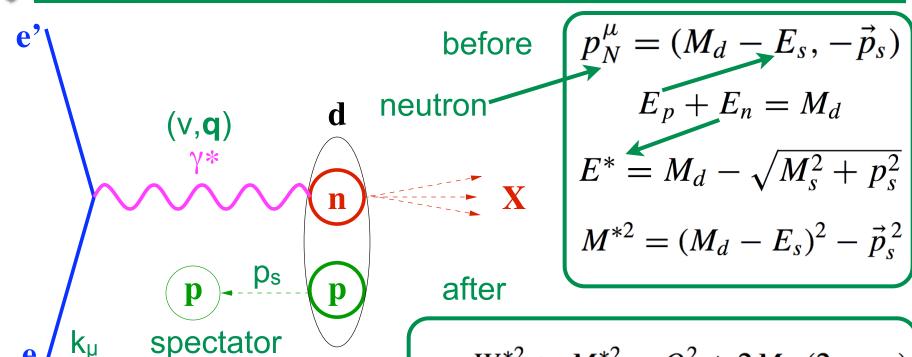
```
N. Baillie, 44, 16 S. Tkachenko, 33, 43 J. Zhang, 33, 39 P. Bosted, 39, 44 S. Bültmann, 33 M.E. Christy, 16 H. Fenker, 39
 K.A. Griffioen, 44 C.E. Keppel, 16 S.E. Kuhn, 33 W. Melnitchouk, 39 V. Tvaskis, 39 K.P. Adhikari, 33 D. Adikaram, 33
**Two authors appeared in the electronic list after the
      A. Daniel, <sup>32</sup> N. Dashyan, <sup>45</sup> R. De Vita, <sup>22</sup> E. De Sanctis, <sup>21</sup> A. Deur, <sup>39</sup> B. Dey, <sup>5</sup> C. Djalali, <sup>38</sup> G. Dodge, <sup>33</sup>
  ★ The computer-generated author list has TeX bugs
  ★ The opt-in system does not include limited members
 *ETheropt-in system does not include term members alkar, 44 H.S. Jo. 24 N. Kalantarians, M. Khandaker, 30 P. Khetarpal, 12 A. Kim, 27 W. Kim, 27 P.M. King, 19, 32 A. Klein
      Who in ave moved on vsky, 39,34 S.V. Kuleshov, 41,25 N.D. Kvaltine, 43 K. Livingston, 42
  ★ A dozen authors were added after opting in via email
     Oafter the deadline appalardo, 20 K. Park, 39, 27 S. Park, 13 E. Pasyuk, 39, 2 S. Anefalos Pereira,
                  S. Pozdniakov, <sup>25</sup> J.W. Price, <sup>3</sup> S. Procureur, <sup>7</sup> Y. Prok, <sup>8,43</sup> D. Protopopescu, <sup>42</sup> B.A. Raue, <sup>12,39</sup>
                     D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatle, M.S. Salni, C. Salgado,
      D. Schott, <sup>12</sup> R.A. Schumacher, <sup>5</sup> E. Seder, <sup>9</sup> Y.G. Sharabian, <sup>39</sup> D.I. Sober, <sup>6</sup> D. Sokhan, <sup>24</sup> S. Stepanyan, <sup>39</sup>
        S.S. Stepanyan,<sup>27</sup> P. Stoler,<sup>34</sup> S. Strauch,<sup>38</sup> M. Taiuti,<sup>14</sup> W. Tang,<sup>32</sup> M. Ungaro,<sup>9</sup> M.F. Vineyard,<sup>40</sup>
    E. Voutier, <sup>28</sup> D.P. Watts, <sup>10</sup> L.B. Weinstein, <sup>33</sup> D.P. Weygand, <sup>39</sup> M.H. Wood, <sup>4,38</sup> L. Zana, <sup>29</sup> and B. Zhao <sup>44,9</sup>
```


A CLAS Experiment with RTPC


- Bound Nucleon Structure Experiment
- d(e,e'p_s)X [(deep) inelastic]
- deuterium target, spectator proton
- $70 < p_s < 180 \text{ MeV/c}$
- JLab Hall B CLAS with an RTPC
- measure F₂ⁿ at high x

N.Baillie, S. Tkachenko,

W. Melnitchouk, K. Griffioen,


S. Kuhn, C. Keppel, M.E. Christy,

H. Fenker, J. Zhang, S. Bültmann

$d(e,e'p_s)X$

- plane-wave impulse approximation
- backward-emitted p is spectator
- struck neutron is off-shell
- momenta are equal and opposite
- Lorentz invariants are corrected for initial neutron 4-momentum

$$W^{*2} \approx M^{*2} - Q^2 + 2M\nu (2 - \alpha_s)$$

$$lpha_s = rac{E_s - p_{s_{||}}}{M_s}$$

$$x^* = \frac{Q^2}{2p_N^{\mu}q^{\mu}} \approx \frac{Q^2}{2M\nu(2-\alpha_s)} = \frac{x}{2-\alpha_s}$$

PWIA Spectator Formalism

$$\frac{d\sigma}{dx^*dQ^2} = \frac{4\pi\alpha_{\rm EM}^2}{x^*Q^4} \left[\frac{y^{-2}}{2(1+R)} + (1-y) \right] + \frac{M^{*2}x^{*2}y^{-2}}{Q^2} \frac{1-R}{1+R} \left[F_2(x^*, \alpha_s, p_T, Q^2) \right] \times S(\alpha_s, p_T) \frac{d\alpha_s}{\alpha_s} d^2p_T,$$

Cross Section

Off-Shell F₂

 $R = \sigma_L/\sigma_T$

Light Cone

Spectral Function

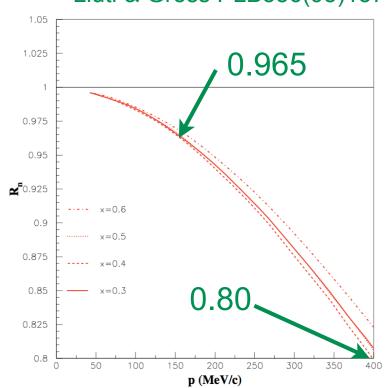
Nonrelativistic w.f.

$$P(\vec{p}_s) = J|\psi_{\rm NR}(p_s)|^2$$

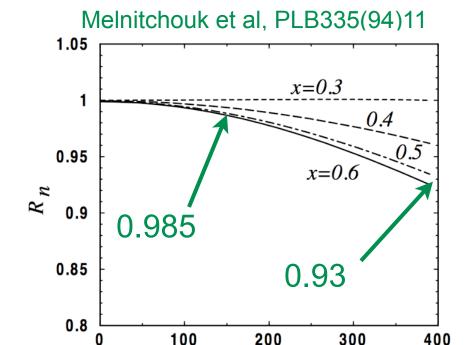
$$J = 1 + \frac{p_{s_{||}}}{E_n^*} = \frac{(2 - \alpha_s)M_d}{2(M_d - E_s)}$$

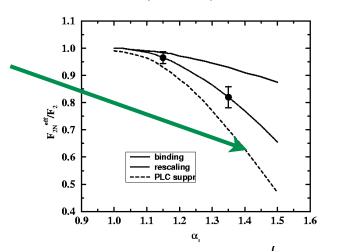
$$S(\alpha_s, p_T) \frac{d\alpha_s}{\alpha_s} d^2 p_T = P(\vec{p}_s) d^3 p_s$$

$$S^{LC}(\alpha_s, p_T) \frac{d\alpha_s}{\alpha_s} d^2 p_T = |\psi_{NR}(|\vec{k}|^2)|^2 d^3 k$$


$$|\vec{k}| = \sqrt{\frac{M^2 + p_T^2}{\alpha_s (2 - \alpha_s)}} - M^2$$
 $\alpha_s = 1 - \frac{k_{||}}{\sqrt{M^2 + \vec{k}^2}}$
 $k_0 = \sqrt{M^2 + \vec{k}^2}$ $\vec{p}_T = \vec{k}_T$

$$\int \int \int S^{LC}(\alpha_s, p_T) \frac{d\alpha_s}{\alpha_s} d^2 p_T = 1$$


Off-Shell Structure Functions


Liuti & Gross PLB356(95)157

$$R_n \equiv (F_2^n)^{\text{eff}}/(F_2^n)^{\text{free}}$$

- R_n decreases with p_s or α
- at x*=0.5 and p_s=0.40 GeV/c, R_n deviates from 1 by 7-20% in these models
- at α=1.4 the deviation from unity could be 40%

 $|\vec{p}|$ (MeV/c)

0.6

Final State Interactions

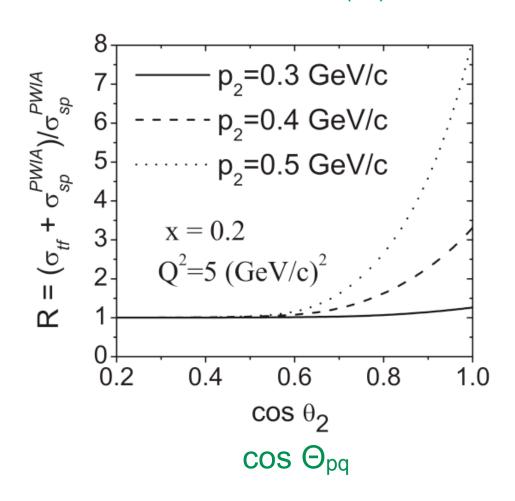
- struck neutron can interact with the spectator proton
- proton momentum is enhanced
- FSIs are small at low p_s and large Θ_{pq}

FSI

T₂ [MeV] 5.3 4.0 1.8 x = 0.6x = 0.6 $\theta_{2} = 90^{\circ}$ 3.2 1.5 $d\sigma^{FSI}/d\sigma^{PWIA}$ $p_2 = 0.2$ 1.2 2.4 $p_2 = 0$ $\theta_{2} = 180^{\circ}$ 1.6 $p_2 = 0.1$ $\theta_{2}=0^{0}$ 0.6 0.8 0.3 0.0 0.2 0.3 0.0 0.10.4 90 120 150 180 60

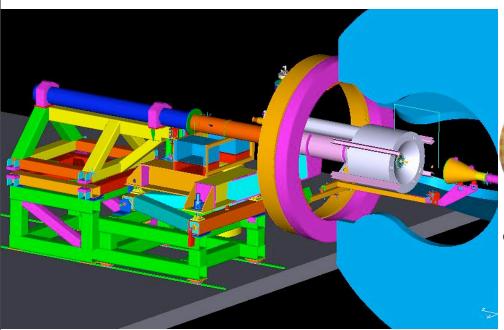
 Θ_{pq}

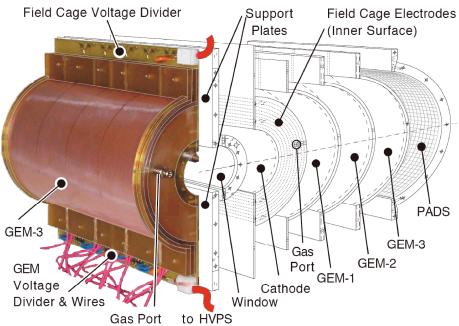
Palli et al, PRC80(09)054610


- several groups have calculated FSIs
- O_{pq} > 110° minimizes FSIs

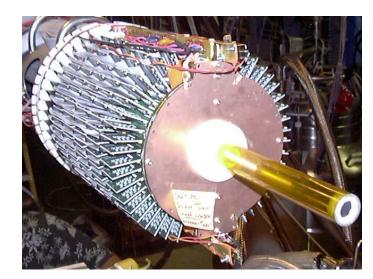
ps

Target Fragmentation

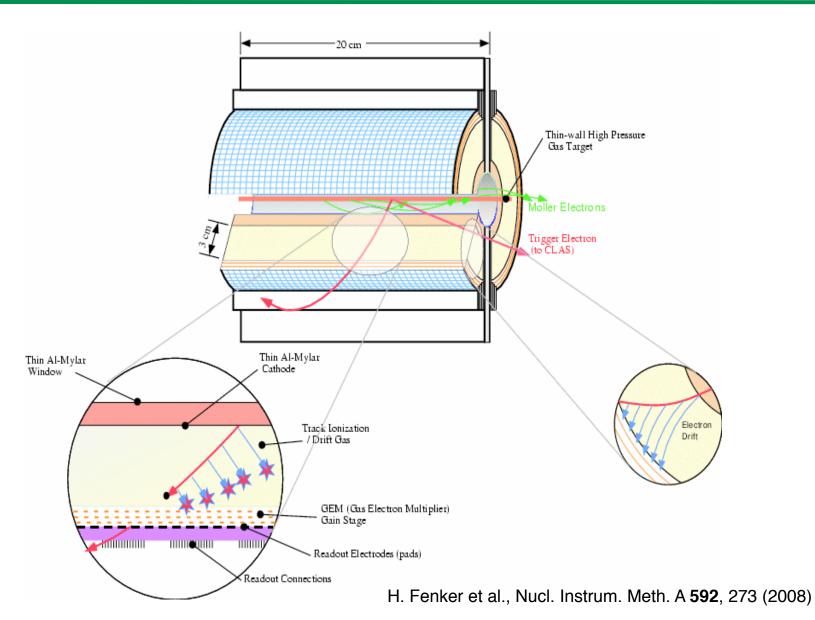

Palli et al, PRC80(09)054610



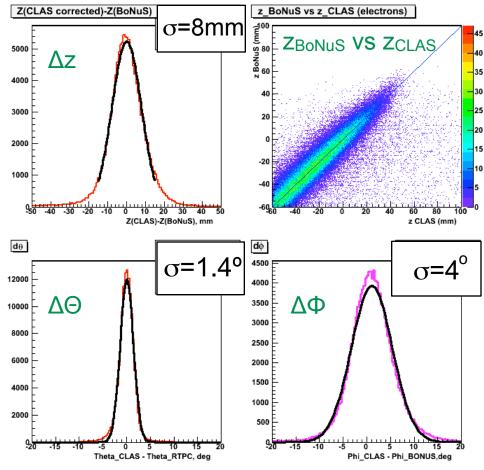
- target fragmentation enhances the proton yield only at forward angles ($\cos \Theta_{pq} > 0.6$)
- this can be ignored

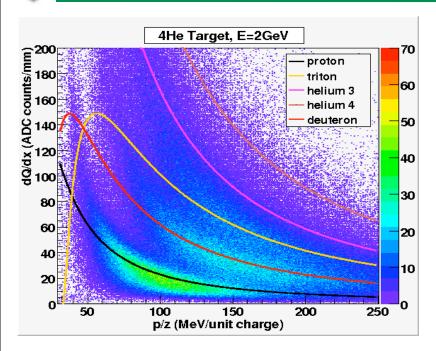


BoNuS Experiment

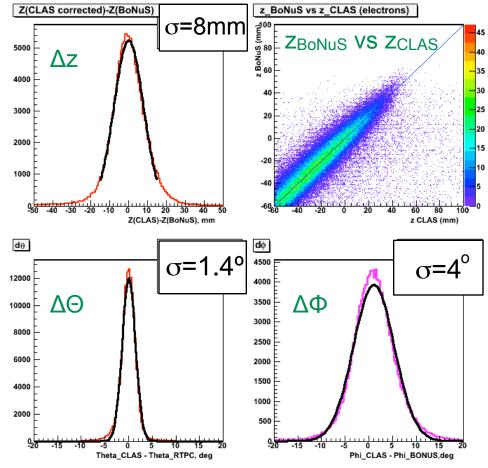


- Bound Nucleon Structure Experiment
- Hall B, JLab, CLAS
- $d(e,e'p_s)X$ with 0.07 < p_s < 0.15 GeV/c
- E_{beam}=1.1, 2.1, 4.2, 5.3 GeV
- Radial time projection chamber for ps
- Data taking in 2005

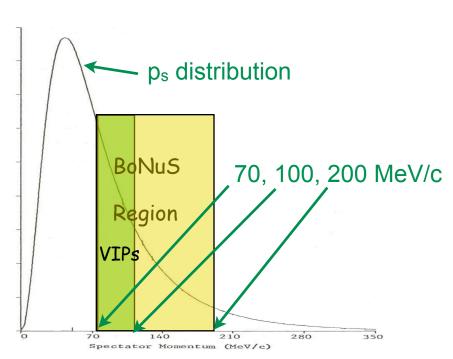

BoNuS Detector

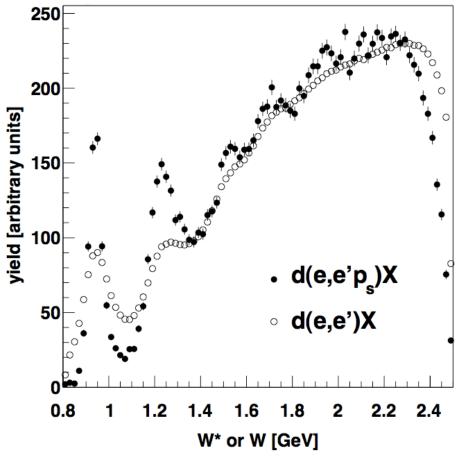

BoNuS RTPC Performance

- upper left: dE/dx vs. p/Z for He target
- lower left: dE/dx vs. p for deuterium target
- below RTPC+CLAS resolution for common e⁻ events



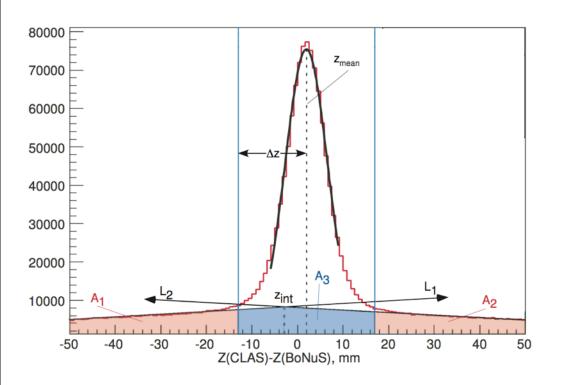
BoNuS RTPC Performance


- upper left: dE/dx vs. p/Z for He target
- lower left: dE/dx vs. p for deuterium target
- below RTPC+CLAS resolution for common e⁻ events



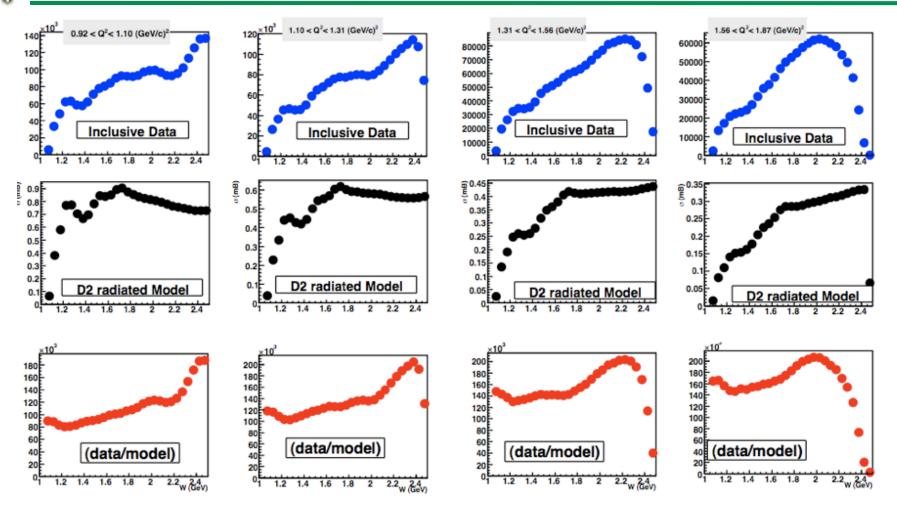
BoNuS Kinematic Correction

- Very Important Protons 70<ps<100 MeV/c
- Corrections make resonances stand out
- F₂ⁿ/F₂^p can be measured at high x*



Two Analysis Methods

- The Ratio Method
 - * measure tagged counts divided by inclusive counts
 - ⋆ correct this ratio for backgrounds
 - ⋆ one scale factor gives F₂n/F₂d
- The Monte Carlo Method
 - ⋆ measure tagged counts
 - ⋆ divide by spectator model Monte Carlo results
 - * multiply by F₂ⁿ used in the model
- The two methods have different systematic errors, but give very similar results.

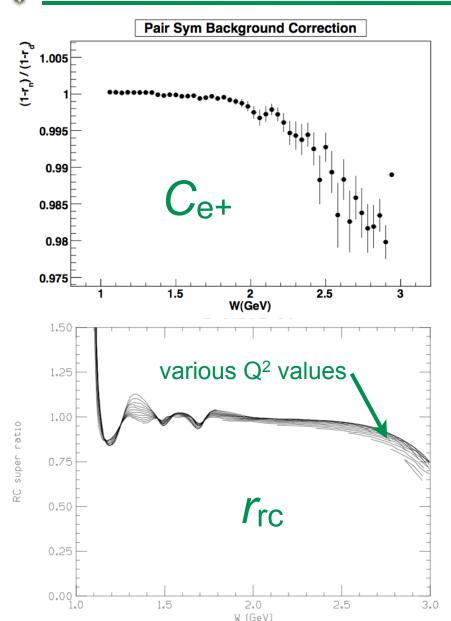

Accidental Backgrounds

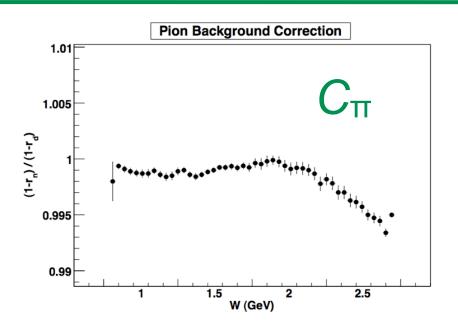
- Z is the position along the beam direction
- Tracking of the electron gives Z(CLAS)
- Tracking of the spectator proton gives Z(BoNuS)
- ΔZ=Z(CLAS)-Z(BoNuS)
 shows a coincidence peak
 and a triangular background
- Fits to the triangular background allows us to measure backgrounds underneath the peak
- Blue area = R_{bg} x Pink area
- R_{bg} is independent of kinematics

CLAS Detection Efficiency

- Top Row: Raw inclusive ed scattering in CLAS [vs. W, 4 plots in Q²]
- Middle Row: Inclusive ed radiated cross sections from world data fit (Bosted)
- Bottom Row: Relative efficiency ε (i.e. Top Row / Middle Row)

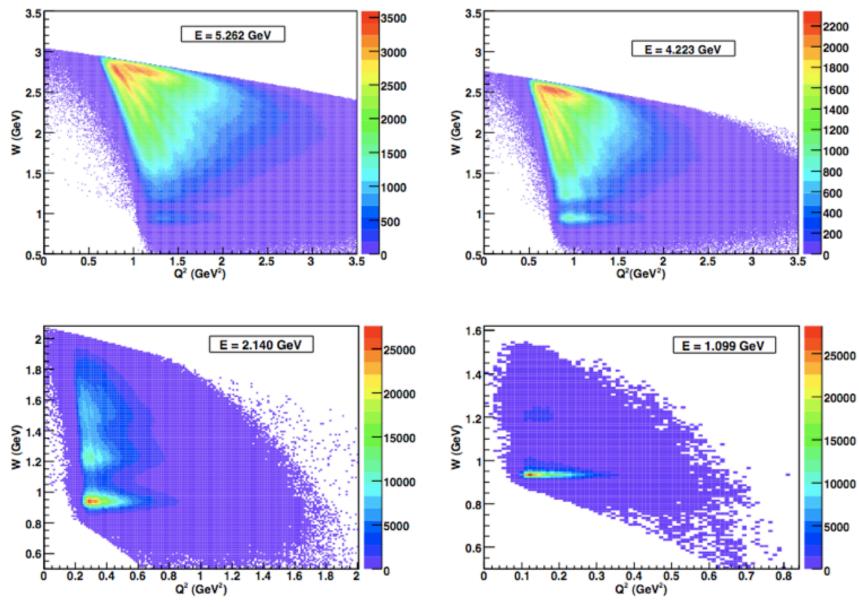
F₂ⁿ/F₂^d from Tagged/Untagged Events


$$R_{corr} = \frac{\sum_{i=1}^{N_{tag}(W^*,Q^2)} \frac{1}{\epsilon_i(W,Q^2)} - R_{bg} \sum_{j=1}^{N_{bg}(W^*,Q^2)} \frac{1}{\epsilon_j(W,Q^2)}}{\sum_{k=1}^{N_{untag}(W,Q^2)} \frac{1}{\epsilon_k(W,Q^2)}}$$

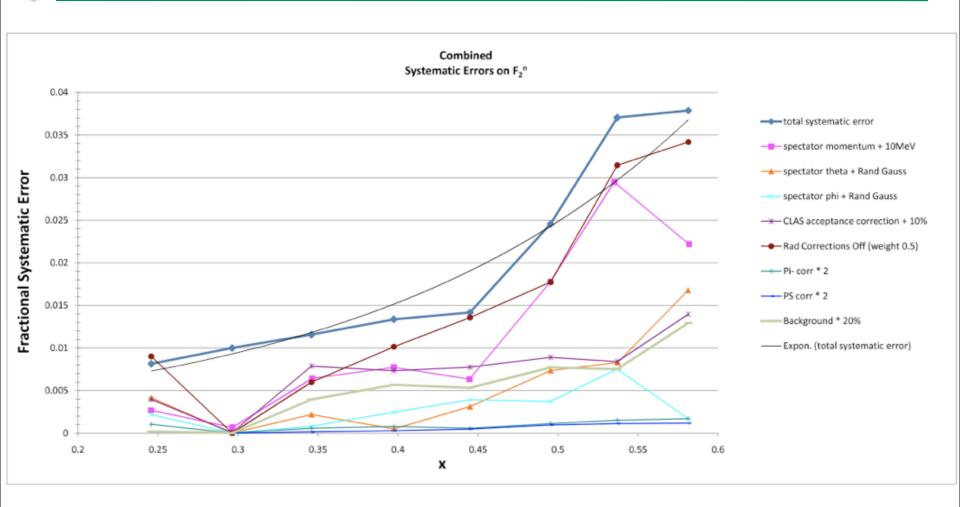

$$\left[\frac{F_2^n}{F_2^d} = (R_{corr})(C_{e^+})(C_{\pi})(r_{rc})(n)\right]$$

- R_{corr} is the tagged to untagged ratio corrected for CLAS efficiency and accidentals
- C_{e+} and C_{π} are corrections for pair-symmetric and π^{-} backgrounds
- r_{rc} is the radiative correction
- n is an overall normalization constant that ensures agreement with world data at x=0.3

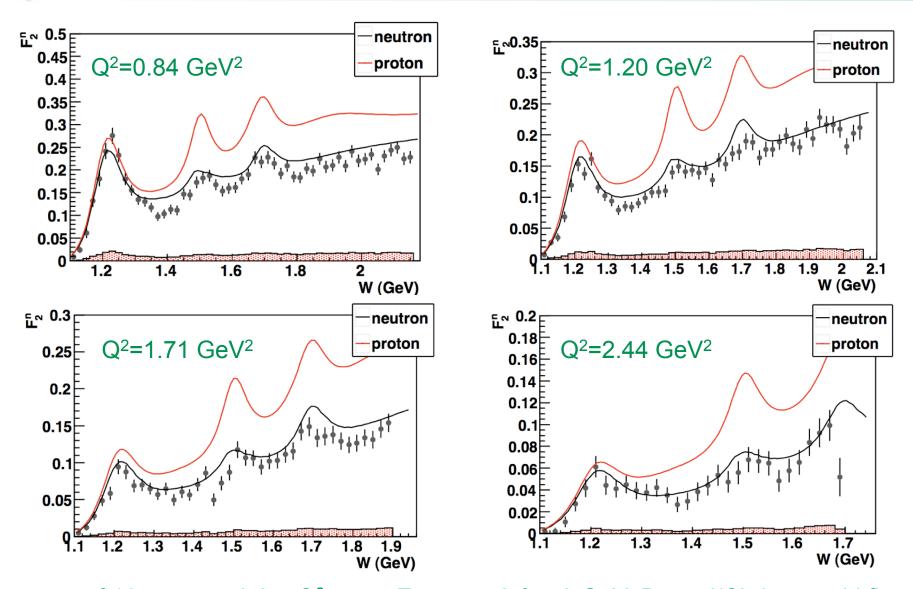
Corrections C_{e+} , C_{p-} , and r_{rc}



- C_{e+} correction < 2 %
- C_{π} correction < 1/2 %
- r_{rc} correction < 10% in the region 1.2<W<2.7 GeV
- $1/n = 0.02535 \pm 3.37\%$

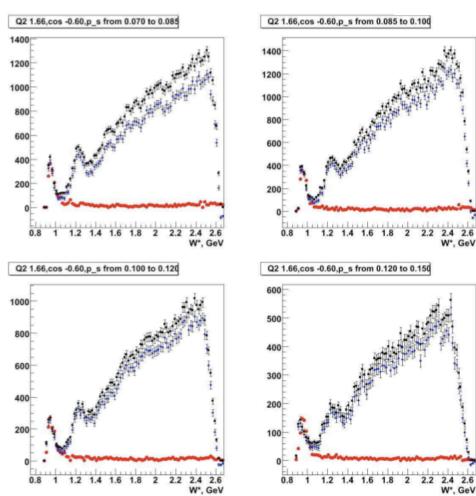


Kinematic Coverage


Systematic Errors

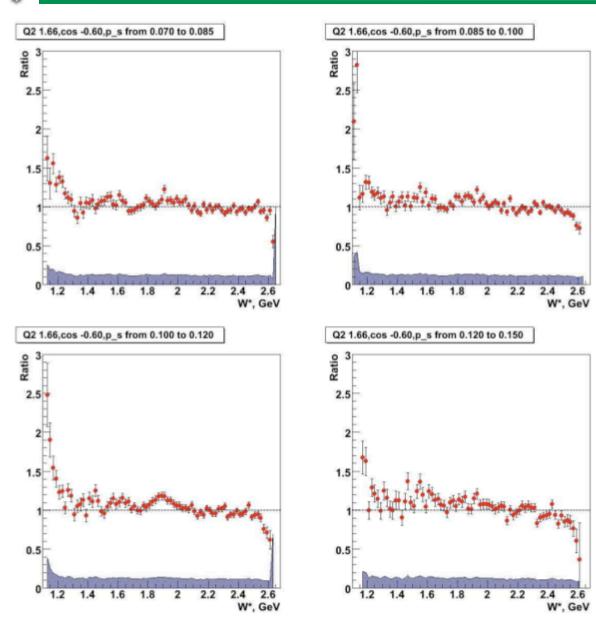
- Full analysis of F₂ⁿ is done after shifting or broadening various quantities
- ΔF_{2}^{n} =0 at x=0.3 where normalization takes place (total value there is interpolated)
- Blue line, all changes are made at once; total error rises from 1% to 4% vs x.

BoNuS F₂ⁿ



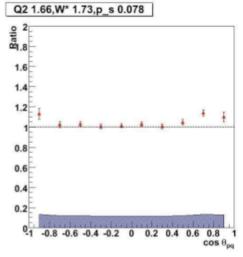
4 of 16 spectra: $0.8 < Q^2 < 4.5$; $E_{beam} = 4.2 \& 5.3 \text{ GeV}$; Bosted/Christy world fits

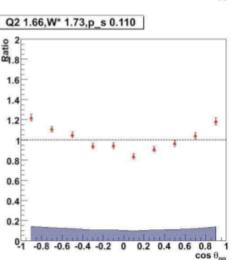
Monte Carlo Method

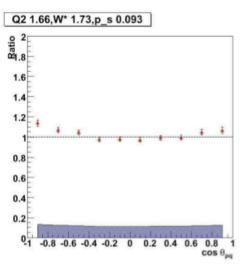

$$R(data/MC) = \frac{F_{2n}^{eff}(W^*, Q^2, \vec{p_s})}{F_{2n}^{model}(W, Q^2)}$$

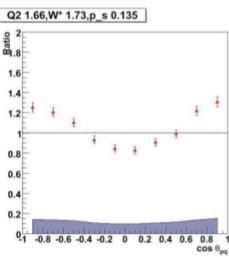
Left: Black=raw tagged data; blue=accidental subtracted data; red=elastic and radiative tail

Data / MC vs W* for Different ps

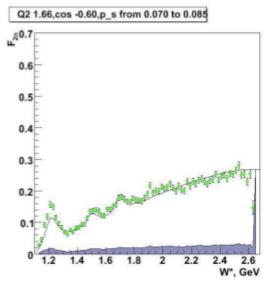


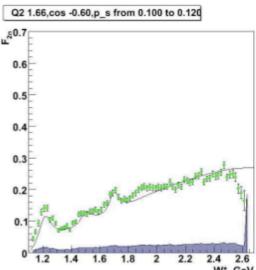

- Deviations from unity at low W* comes from difficulties of getting the model right for the resonances
- Generally the ratio is close to unity
- Perhaps some effects at high ps

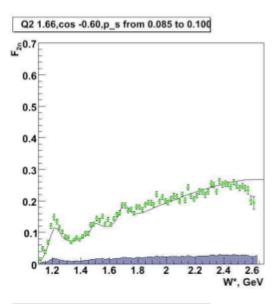

13 October 2011 CLAS Collaboration Meeting 23

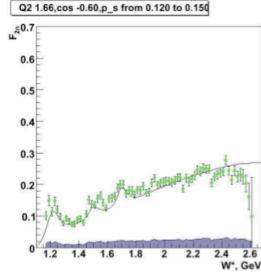


cosθ distributions / MC

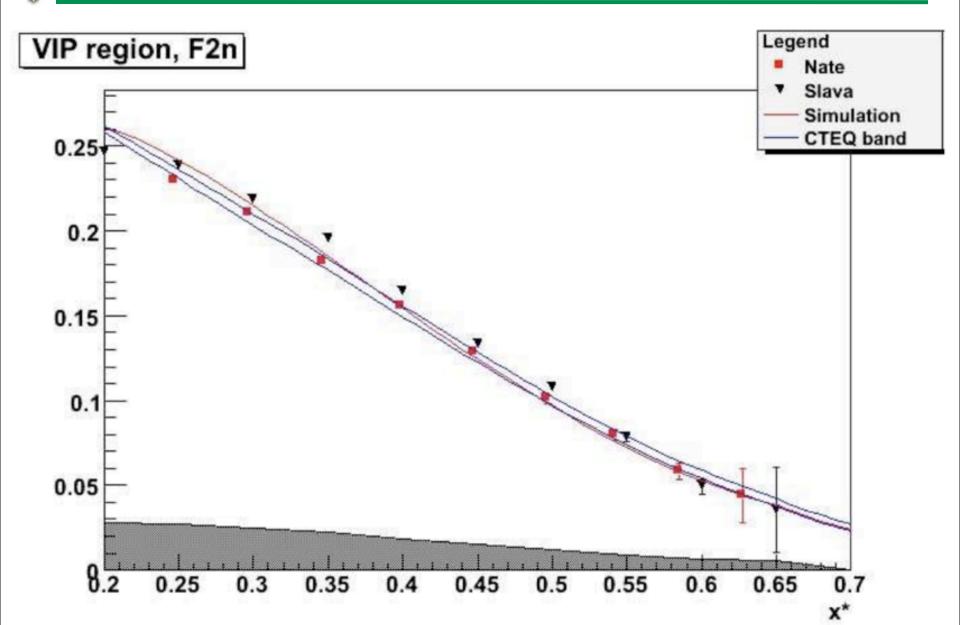




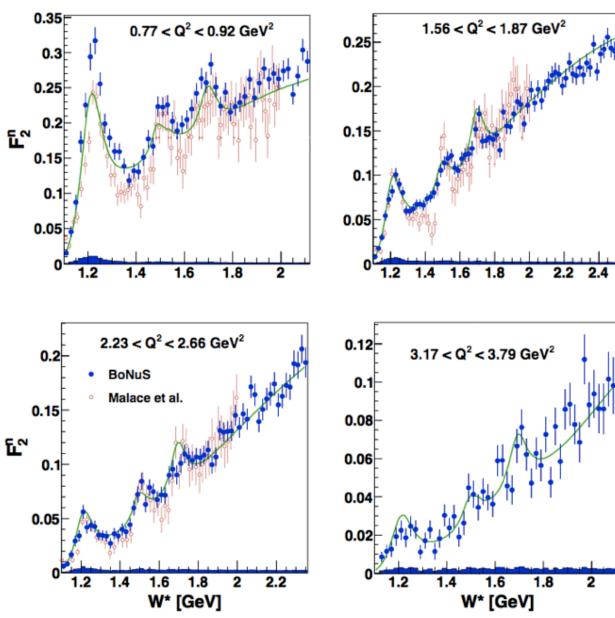

- At low p_s the data agree with the spectator model quite well
- At higher p_s the distributions deviate significantly from unity, indicating that VIP particles should have p_s<100 MeV/c



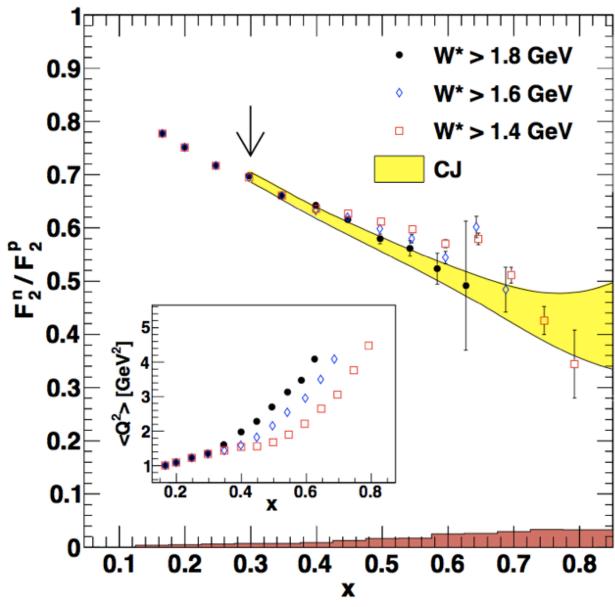
F₂ⁿ for various p_s



- Data show resonance peaks.
- Data agree quite well with resonance model of world data
- Dependence on spectator momentum is slight



Ratio and MC Method Comparison

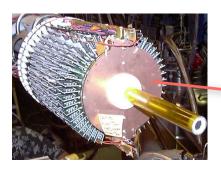

Final Data

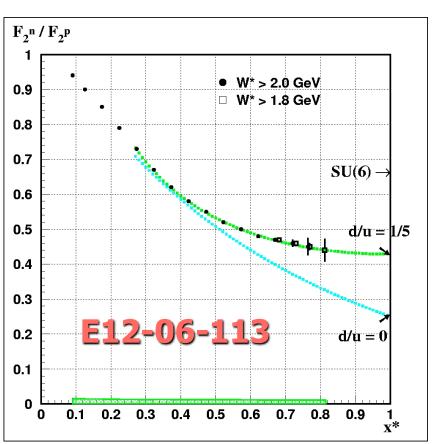
Various data compared to a state of the art nuclear physics extraction of neutron structure functions from deuterium (red points, Malace, et al.)

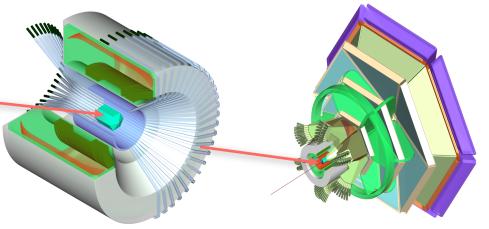
13 October 2011 CLAS Collaboration Meeting 27

- $F_2^n/F_2^n vs. x$
- Curves are CETQ error bands
- CETQ cuts off at low x because Q² is too low
- Lower cuts in W* imply higher x but the inclusion of resonance contributions.
- Results are consistent with CETQ trends at high x.

Conclusions


BoNuS:


- We have measured F₂ⁿ on a "free" neutron target
- No effects from Fermi motion and final-state interactions
- No evidence for off-shell structure for p_s<100 MeV/c
- F₂ⁿ/F₂^p behaves at high x much like CETQ high-x fits
- F₂ⁿ resonance data will significantly improve the world data set, which up to now came from d with nuclear corrections
- Long paper, with details of the off-shell study is in the works (S. Tkachenko), as is a paper on D(e,e'π-p_sp)
 (J. Zhang)


END OF TALK

BoNuS Plans for 12 GeV

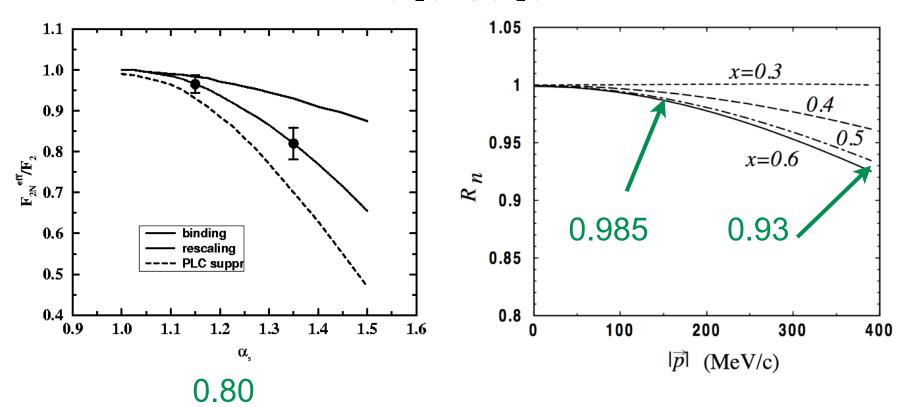
Data taking:

- 35 days on D_2
- 5 days on H₂
- $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

DIS region:

- $Q^2 > 1 \text{ GeV}^2$
- W* > 2 GeV
- p_s < 100 MeV/c
- $-\theta_{pq} > 110^{\circ}$
- $x^*_{max} = 0.80$

 $W^* > 1.8 \text{ GeV}$: $x^*_{max} = 0.83$

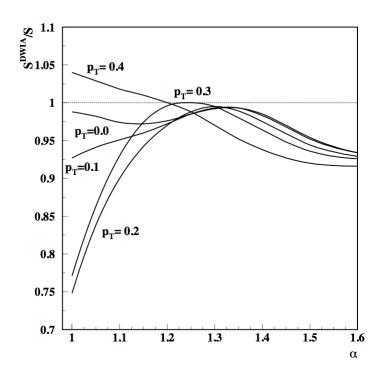


Off-Shell Structure Functions

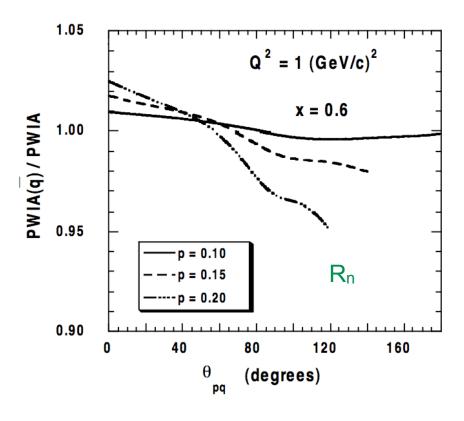
Liuti & Gross PLB356(95)157

Melnitchouk et al, PLB335(94)11

$$R_n \equiv (F_2^n)^{\text{eff}}/(F_2^n)^{\text{free}}$$



- Resonances induce huge variations in A₁ compared to the smooth deep-inelastic behavior (red)
- The world's collected wi



Spectral Functions

Melnitchouk et al., ZPA359(97)99

Heller & Thomas, PRC41(90)2756

