HOMEWORK \#8\#

Course 314,Introduction In Quantum Mechanics,Professor K. Griffioen
Department of Physics, College of William and Mary, Williamsburg, Virginia 23185

1 Problem 9.3

Suppose the perturbation takes the form of a delta function (in time) :

$$
\begin{equation*}
H^{\prime}=U \delta\left(t-t_{0}\right) \tag{1}
\end{equation*}
$$

assume that $U_{a a}=U_{b b}=0$, and let $U_{a b}=\alpha$. If $c_{a}(-\infty)=1$ and $c_{b}(-\infty)=0$, find $c_{a}(t)$ and $c_{b}(t)$, and check that $\left|c_{a}(t)\right|^{2}+\left|c_{b}(t)\right|^{2}=1$. What is the probability $\left(P_{a \rightarrow b}\right)$ that a transition occurs?

2 Solution

From relations 9.13 we have that the coefficients \dot{c}_{a} and \dot{c}_{b} are the following :

$$
\begin{align*}
& \dot{c}_{a}=-\frac{i}{\hbar} H_{a b}^{\prime} e^{-i \omega_{0} t} c_{b} \tag{2}\\
& \dot{c}_{b}= \\
& -\frac{i}{\hbar} H_{b a}^{\prime} e^{1 \omega_{0} t} c_{a}
\end{align*}
$$

If we'll plug the expression of H' into the above relations we'll obtain the following :

$$
\begin{align*}
& \dot{c}_{a}=-\frac{i}{\hbar} \alpha \delta\left(t-t_{0}\right) e^{-i \omega_{0} t} c_{b} \tag{3}\\
& \dot{c}_{b}=-\frac{i}{\hbar} \alpha^{*} \delta\left(t-t_{0}\right) e^{i \omega_{0} t} c_{a}
\end{align*}
$$

Integrating those relations we'll get :

$$
\begin{align*}
\int_{-\infty}^{t} \dot{c}_{a} d t^{\prime} & =\int_{-\infty}^{t}-\frac{i}{\hbar} \alpha \delta\left(t^{\prime}-t_{0}\right) e^{-i \omega_{0} t^{\prime}} c_{b}\left(t^{\prime}\right) d t^{\prime} \tag{4}\\
\int_{-\infty}^{t} \dot{c}_{b} d t^{\prime} & =\int_{-\infty}^{t}-\frac{i}{\hbar} \alpha^{*} \delta\left(t^{\prime}-t_{0}\right) e^{i \omega_{0} t^{\prime}} c_{a}\left(t^{\prime}\right) d t^{\prime}
\end{align*}
$$

For $t<t_{0}$ we'll obtain that :

$$
\begin{align*}
& c_{a}(t)=1, \tag{5}\\
& c_{b}(t)=0
\end{align*}
$$

For $t \geq t_{0}$ we'll obtain that:

$$
\begin{array}{ll}
c_{a}(t) & =1-\frac{i}{\hbar} \alpha e^{-i \omega_{0} t_{0}} c_{b}\left(t_{0}\right) \tag{6}\\
c_{b}(t) & =-\frac{i}{\hbar} \alpha^{*} e^{i \omega_{0} t_{0}} c_{a}\left(t_{0}\right)
\end{array}
$$

For $t<t_{0}$ the probability that a transition occurs $\left(P_{a \rightarrow b}\right)$ is given by :

$$
\begin{equation*}
P_{a \rightarrow b}=\left|c_{b}\right|^{2}=0 \tag{7}
\end{equation*}
$$

For the case $t \geq t_{0}$ we'll use the step function as follows(see Problem 2.24):
(i) we'll take $c_{a}\left(t_{0}\right)$ to be half way between 1 and $\left[1-\frac{i}{\hbar} \alpha e^{-i \omega_{0} t-0} c_{b}\left(t_{0}\right)\right]$
(ii) we'll take $c_{b}\left(t_{0}\right)$ to be half way between 0 and $\left[-\frac{i}{\hbar} \alpha^{*} e^{i \omega_{0} t_{0}} c_{a}\left(t_{0}\right)\right]$.
yWe'll obtain then :

$$
\begin{align*}
c_{a}\left(t_{0}\right) & =1-\frac{i}{\hbar} \frac{\alpha}{2} e^{-i \omega_{0} t_{0}} c_{t_{0}} \tag{8}\\
c_{b}\left(t_{0}\right) & =-\frac{i}{\hbar} \frac{\alpha^{*}}{2} e^{i \omega_{0} t_{0}} c_{a}\left(t_{0}\right)
\end{align*}
$$

$$
\begin{aligned}
c_{a}\left(t_{0}\right) & =\frac{1}{1+\left(\frac{i}{\hbar} \frac{\alpha}{2} e^{-i \omega_{0} t_{0}}\right)\left(-\frac{i}{\hbar} \frac{\alpha^{*}}{2} e^{i \omega_{0} t_{0}}\right)} \\
c_{b}\left(t_{0}\right) & =\frac{-\frac{i}{\hbar} \frac{\alpha^{*}}{2} e^{i \omega_{0} t_{0}}}{1+\left(\frac{i}{\hbar} \frac{\alpha}{2} e^{-i \omega_{0} t_{0}}\right)\left(-\frac{i}{\hbar} \frac{\alpha^{*}}{2} e^{i \omega_{0} t_{0}}\right)}
\end{aligned}
$$

If we plug into (6) then the time dependent coefficients, for $t \geq t_{0}$ will be :

$$
\begin{align*}
c_{a}(t) & =1-\frac{\frac{i}{\hbar} \alpha e^{-i \omega_{0} t_{0}}\left(-\frac{i}{\hbar} \frac{\alpha^{*}}{2}\right) e^{i \omega_{0} t_{0}}}{1+\frac{|\alpha|^{2}}{4 \hbar^{2}}} \tag{9}\\
c_{b}(t) & =\frac{-\frac{i}{\hbar} \alpha^{*} e^{i \omega_{0} t_{0}}}{1+\frac{|\alpha|^{2}}{4 \hbar^{2}}}
\end{align*}
$$

The probability that the transition occurs $\left(P_{a \rightarrow b}\right)$, for $t \geq t_{0}$ will be :

$$
\begin{align*}
P_{a \rightarrow b}=\left|c_{b}\right|^{2} & =\frac{|\alpha|^{2} / \hbar^{2}}{\left(1+|\alpha|^{2} / 4 \hbar^{2}\right)^{2}} \tag{10}\\
\left|c_{a}\right|^{2}+\left|c_{b}\right|^{2} & =1
\end{align*}
$$

3 Problem 9.10

Calculate the lifetime (in seconds) for each of the four $n=2$ states of hidrogen.Hint: You'll need to evaluate matrix elements of the form $<\psi_{100}|x| \psi_{200}>,<\psi_{100}|x| \psi_{211}>$, and so on. Remember that $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$, and $z=r \cos \theta$. Most of integrals are zero, so scan them before you start calculating.

4 Solution

For $n=2$ we have the following wave functions: $\psi_{200}, \psi_{21,-1}, \psi_{210}, \psi_{211}$. The transition rate is give by :

$$
\begin{equation*}
A=\quad \frac{\omega^{3}|\vec{p}|^{2}}{3 \pi \epsilon_{0} \hbar c^{3}}, \tau=\frac{1}{A} \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
A= & \frac{4|\vec{p}|^{2}(\hbar \omega)^{3}}{12 \pi \epsilon_{0}(\hbar c)^{3} \hbar}, \\
\vec{p}= & -e<n^{\prime} l^{\prime} m^{\prime}|\vec{r}| n l m>
\end{aligned}
$$

We use the well known constants $\hbar c=197 M e V-f m$, and $\frac{e^{2}}{4 \pi \epsilon_{0}}=1.44 M e V-f m$ in computting the transition rate A :

$$
\begin{equation*}
A=4.05 \times 10^{-10}\left|<n^{\prime} l^{\prime} m^{\prime}\right| \vec{r}|n l m>|^{2}\left(\frac{1}{(n s)(f m)^{2}}\right) \tag{12}
\end{equation*}
$$

We $l l$ use the spherical polar coordinates to exprim the \vec{r}, and the angular functions $Y_{l m}$ to compute the matrix elements $<n^{\prime} l^{\prime} m^{\prime}|\vec{r}| n l m>$:

$$
\begin{align*}
\vec{r} & =\quad r \sin \theta \cos \phi \hat{i}+r \sin \theta \sin \phi \hat{j}+r \cos \theta \hat{k}, \tag{13}\\
\cos \theta & =\sqrt{\frac{4 \pi}{3}} Y_{10} \\
\sin \theta \cos \phi & =\quad\left(Y_{11}+Y_{1,-1}\right) \sqrt{\frac{2 \pi}{3}} \\
\sin \theta \sin \phi & =\quad\left(-Y_{11}-Y_{1,-1}\right) \frac{1}{i} \sqrt{\frac{2 \pi}{3}}
\end{align*}
$$

The wave functions are :

$$
\begin{align*}
\psi_{200} & =\quad R_{20} Y_{00}, Y_{00}=\frac{1}{\sqrt{4 \pi}} \tag{14}\\
\psi_{21,-1} & =\quad R_{21} Y_{1,-1}, Y_{1,-1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}, \\
\psi_{210} & =R_{21} Y_{10}, Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
\psi_{21,-1} & =\quad R_{21} Y_{11}, Y_{11}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}
\end{align*}
$$

The matrix elements which are not equal with zero are :

$$
\begin{equation*}
<210|z| 100>, \quad<211|y| 100>, \quad<21-1|y| 100> \tag{15}
\end{equation*}
$$

$$
<211|x| 100>, \quad<21-1|x| 100>
$$

Each of these integrals has the factor :

$$
\begin{equation*}
\int_{0}^{\infty} r^{3} R_{21} R_{10} d r=a \frac{2^{8}}{3^{4} \sqrt{6}} \tag{16}
\end{equation*}
$$

The angular contribution in each direction($\mathrm{x}, \mathrm{y}, \mathrm{z}$) will be :

$$
\begin{array}{ll}
x: \longrightarrow \frac{1}{3} \tag{17}\\
y: & \longrightarrow \frac{1}{6} \\
z: & \longrightarrow \frac{1}{6}
\end{array}
$$

Since $|\vec{p}|^{2}=\left|<x>\left.\right|^{2}+\left|<y>\left.\right|^{2}+|<z>|^{2}\right.\right.$ each transition gets a factor (1/3).Then we plug the above results into () and will obtain :

$$
\begin{align*}
\left|<n^{\prime} l^{\prime} m^{\prime}\right| \vec{r}|n l m>|^{2} & =\quad a^{2} \frac{2^{15}}{3^{10}} \tag{18}\\
A & =0.629(n s)^{-1} \\
\tau & =1 / A=1.59 n s
\end{align*}
$$

No transitions have place between ψ_{200} and ψ_{100}, so in this case $\tau \longrightarrow \infty$.

5 Problem 9.13

An electron in the $n=3, l=0, m=0$ state of hidrogen decays by a sequence of (electric dipole) transitions to the ground state.
(a) What decays routes are open to it? Specify them in the followingway ;

$$
\begin{equation*}
|300>\rightarrow| n l m>\rightarrow\left|n^{\prime} l^{\prime} m^{\prime}>\rightarrow \ldots \rightarrow\right| 100> \tag{19}
\end{equation*}
$$

(b) If you had a bottle ful of atoms in this state, what fraction of them would decay via each route ?
(c) What is the lifetime of this state?

6 Solution

(a) As we saw in the previous problem (9.10) the decays $|300 \rightarrow \rightarrow| 21 m>$ have the same angular integrals as the decays $|21 m>\rightarrow| 100>$. Only the radial integrals are different, but they are the same for each value of m :

$$
\begin{align*}
& |300>\longrightarrow| 210>\longrightarrow \mid 100>, \tag{20}\\
& |300>\longrightarrow| 21-1>\longrightarrow \mid 100>, \\
& |300>\longrightarrow| 211>\quad \longrightarrow \mid 100>
\end{align*}
$$

(b) All the above states (20) are equally likely.
(c) We need to evaluate the integral $\int_{0}^{\infty} r^{3} R_{30} R_{21} d r$:

$$
\begin{align*}
\int_{0}^{\infty} r^{3} R_{30} R_{21} d r & =\int_{0}^{\infty} r^{3} \frac{2}{\sqrt{27}}\left[1-\frac{2 r}{3 a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}\right] e^{-r / 3 a} \frac{1}{\sqrt{24}} \frac{1}{a^{3 / 2}} \frac{r}{a} e^{-r / 2 a} d r \tag{21}\\
& =\frac{3456}{15625} a \sqrt{18}
\end{align*}
$$

The transition rate (A) will be the same for each state ($|210>,|21-1>| 211>$,$) , and will be 0.7273$ of the transition rate obtained in problem 9.10 , so the lifetime of the state $\mid 300>$ will be :

$$
\begin{align*}
A & =0.457(n s)^{-1} \tag{22}\\
\tau & =\frac{1}{3 \times A}=0.73 n s
\end{align*}
$$

References

[1] D.J.Griffiths,Introduction To Quantum Mechanics,1995

