HOMEWORK \#7\#

Course 314,Introduction In Quantum Mechanics,Professor K. Griffioen
Department of Physics, College of William and Mary, Williamsburg, Virginia 23185

1 Problem 7.17

The fundamental problem in harnessing nuclear fusion is getting the two particles (say, two deuterons) close enough together for the attractive (but short-range) nuclear force to overcame the Coulomb repulsion. The "brute force" method is to heat the particles to fantastic temperatures and allow teh random collisions to bring them together. A more exotic proposal is muoncatalysis, in which we construct a "hydrogen molecule ion", onlywith deuterons in place of protons, and a muon in place of the electron. Predict the equilibrium separation distance between the deuterons in such a structure, and explain why muons are superior to electrons for this purpose.

2 Solution

The raport between atomic masses of moun and electron is :

$$
\begin{equation*}
\frac{m_{\mu}}{m_{e}} \approx 207 \tag{1}
\end{equation*}
$$

The point of minimum energy has $x=2.4$ and is given by $x=\frac{R}{a}$ where R is the separation of the two nuclei, and the Bohr radius is given by :

$$
\begin{equation*}
a=\frac{4 \pi \epsilon k^{2}}{m e^{2}} \tag{2}
\end{equation*}
$$

We simly replace the mass of the electron with the mass of the muon :

$$
\begin{equation*}
R=a_{\mu} x=\frac{a_{\mu}}{a_{e}}\left(a_{e} x\right)=\frac{m_{e}}{m_{\mu}}\left(1.27 \times 10^{-10}\right) m=6.14 \times 10^{-13} m \tag{3}
\end{equation*}
$$

3 Problem 8.7

Use the WKB approximation to find the allowed energies of the harmonic oscillator.

4 Solution

The potential(perturbation) of the harmonic oscillator is $E=\frac{1}{2} m \omega^{2} x_{0}^{2}$, and using the WKB approximation we have :

$$
\begin{align*}
p(x) & =\sqrt{2 m\left(E-\frac{1}{2} m \omega^{2} x_{0}^{2}\right)} \tag{4}\\
\int_{-x_{0}}^{x_{0}} p(x) d x & =\left(n-\frac{1}{2}\right) \pi \hbar, n=1,2,3 \ldots \\
\int_{-x_{0}}^{x_{0}} \sqrt{2 m x_{0}^{2}} \sqrt{1-\left(\frac{x}{x_{0}}\right)^{2}} \sqrt{\frac{1}{2} m \omega^{2}} d x & =\int_{-1}^{1} m \omega x_{0}^{2} \sqrt{1-u^{2}} d u \\
\frac{1}{2} m \omega x_{0}^{2} \pi & =\left(n-\frac{1}{2}\right) \pi \hbar \\
E & =\left(n-\frac{1}{2}\right) \hbar \omega
\end{align*}
$$

where we changed variables $u=\frac{x}{x_{0}}$. The result is exactly the harmonic oscillator result, since n starts with 1 in this case, instead of with 0 .

5 Problem 8.13

For spherically symmetrical potentials, we apply the WKB approximation to the radial equation, (Equation 4.37). In the case $l=0$, it is reasonable to use Equation 8.47 in the form :

$$
\begin{equation*}
\int_{0}^{r_{0}} p(r) d r=(n-1 / 4) \pi \hbar \tag{5}
\end{equation*}
$$

where r_{0} is the turning point (in effect, we treat $r=0$ as an infinite wall). Apply this formula to estimate the allowed energies of a particle in the logarithmic potential :

$$
\begin{equation*}
V(r)=V_{0} \ln (r / a) \tag{6}
\end{equation*}
$$

(for constants V_{0} and a). Treat only the case $l=0$. Show that the spacing between the levels is independent of mass.

6 Solution

From WKB approximation we have :

$$
\begin{equation*}
\int_{0}^{r_{n}}=(n-1 / 4) \pi \hbar \tag{7}
\end{equation*}
$$

The n and $(n+1)$ energy levels will be given by :

$$
\begin{align*}
& E_{n+1}= \tag{8}\\
& E_{n}=V_{0} \ln \frac{r_{n+1}}{a} \\
& V_{0} \ln \frac{r_{n}}{a} \\
& E_{n+1}-E_{n}= \tag{9}\\
& V_{0}\left(\ln \frac{r_{n+1}}{a}-\ln \frac{r_{n}}{a}\right) \\
& E_{n+1}-E_{n}= \\
& V_{0} \ln \frac{r_{n+1}}{r_{n}}
\end{align*}
$$

We'll plug into (7) and we'll obtain :

$$
\begin{align*}
\ln \int_{0}^{r_{n}} \sqrt{2 m\left(V_{0} \ln \frac{r_{n}}{a}-V_{0} \ln \frac{r}{a}\right)} d r & = & \ln \left[\left(n-\frac{1}{4}\right) \pi \hbar\right] \tag{10}\\
\ln \int_{0}^{r_{n+1}} \sqrt{2 m\left(V_{0} \ln \frac{r_{n+1}}{a}-V_{0} \ln \frac{r}{a}\right)} d r & = & \ln \left[\left(n+\frac{3}{4}\right) \pi \hbar\right] \\
\ln \sqrt{2 m V_{0}}+\ln \int_{0}^{r_{n}} \sqrt{\ln \left(r_{n} / r\right)} d r & = & \ln \pi \hbar+\ln (n-1 / 4), \\
\ln \sqrt{2 m V_{0}}+\ln \int_{0}^{r_{n+1}} \sqrt{\ln \left(r_{n+1} / r\right)} d r & = & \ln \pi \hbar+\ln (n+3 / 4)
\end{align*}
$$

We'll substract the above relations one from each other and we'll make the following change of variable:

$$
\begin{equation*}
u=\frac{r}{r_{n}}, d u=\frac{d r}{r_{n}} \tag{11}
\end{equation*}
$$

$$
u=\frac{r}{r_{n+1}}, d u=\frac{d r}{r_{n+1}}
$$

We'll obtain the relations:

$$
\begin{align*}
\ln \left(\frac{n+3 / 4}{n-1 / 4}\right) & =\quad \ln r_{n+1}-\ln r_{n}, \tag{12}\\
\ln \frac{r_{n+1}}{r_{n}} & =\frac{1}{V_{0}}\left(E_{n+1}-E_{n}\right), \\
E_{n+1}-E_{n} & =V_{0} \ln \left(\frac{n+3 / 4}{n-1 / 4}\right)
\end{align*}
$$

7 Problem 9.1

A hidrogen atom is placed in a (time-dependent) electric field $E=E(t) \hat{k}$. Calculate all four matrix elements $H_{i j}^{\prime}$ of the perturbation $H^{\prime}=-e E z$ between the ground state ($n=1$) and the (quadruply degenerate) first excited states $(n=2)$. Also show that $H_{i j}^{\prime}=0$ for all five states. Note: there is only one integral to be done here, if you exploit oddness with respect to z . As a result, only one of the $n=2$ states is "accsessible" from the ground state by a perturbation of this form, and therefore the system functions as a two-level configuration - assuming transitions to higher excited states can be ignored.

8 Solution

$$
\begin{equation*}
H^{\prime}=-e E z, z=r \cos \theta=\sqrt{\frac{4 \pi}{3}} r Y_{1}^{0} \tag{13}
\end{equation*}
$$

where Y_{l}^{m} are the angular functions of the wave functions and :

$$
\begin{align*}
& \int Y_{l^{\prime} m^{\prime}}^{*} Y_{l m} d \omega= \tag{14}\\
& Y_{l l^{\prime}} \delta_{m m^{\prime}} \\
& Y_{00}=0
\end{align*}
$$

The wave functions are given by :

$$
\begin{equation*}
\psi_{100}=\quad Y_{00} R_{10} \tag{15}
\end{equation*}
$$

$$
\begin{aligned}
\psi_{200}= & Y_{00} R_{20} \\
\psi_{210} & =Y_{10} R_{21} \\
\psi_{21,-1}= & Y_{1,-1} R_{21} \\
\psi_{211}= & Y_{11} R_{21}
\end{aligned}
$$

The matrix elements of H'are given by :

$$
\begin{equation*}
H_{i j}^{\prime}=<n^{\prime} l^{\prime} m^{\prime}\left|H^{\prime}\right| n l m>=-e E<100|z| 2 l m>=-e E Y_{00} Y_{10} Y_{l m} \tag{16}
\end{equation*}
$$

But from the definition of $\langle\psi| H|\psi\rangle$ we get that :

$$
\begin{equation*}
\int d \Omega Y_{00} Y_{10} Y_{l m}=Y_{00} \int d \Omega Y_{10}^{*} Y_{l m}=Y_{00} \delta_{l 1} \delta_{m 0} \tag{17}
\end{equation*}
$$

And we can observe that only ψ_{210} is possible.We plug ψ_{210} into (16) and the nonvanishing term of H^{\prime} will be :

$$
\begin{align*}
<\psi_{210}\left|H^{\prime}\right| \psi_{210} & = \tag{18}\\
\int_{0}^{\infty} r^{3} \frac{2}{a^{3 / 2}} e^{-r / a} \frac{1}{\sqrt{24}} \frac{1}{a^{3 / 2}} \frac{r}{a} e^{-r / 2 a} d r & =\quad \frac{2}{a^{4}} \frac{1}{\sqrt{24}}\left(\frac{2 a}{3}\right)^{5} \int_{0}^{\infty} u^{4} e^{-u} d u \\
<H^{\prime}>= & -e E a \frac{2^{15 / 2}}{3^{5}}=-0.745 e E a
\end{align*}
$$

References

[1] D.J.Griffiths,Introduction To Quantum Mechanics, 1995

