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1 Problem 7:1

Use the gausian trial function (Equation 7:2) to obtain the lowest upper bound you can on the ground-

state energy of (a) the linear potential : V (x) = �jxj ; (b) the quartic potential : V (x) = �x4.

2 Solution

(a) The gaussian trial wavefunction is given by :

 (x) = Ne�bx
2

(1)

where N is the normalization constant: N = ( 2b� )
1=4 ,so the normalized wavefunction has the following

form :

 (x) = (
2b

�
)1=4e�bx

2

(2)

The energy eigenstate is given by the average of H, < H >, where the Hamiltonian is given by :

H = � �h

2m

d

dx2
+ �jxj (3)

The average < H > by de�nition is given as :

< H >=
<  (x)jH j (x) >
<  (x)j (x) > (4)

We'll have then :

E =< H >=

Z +1

�1

dx (x)H (x)� (5)
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E =< H >= (
2b

�
)1=2

Z +1

�1

dxe�bx
2

�
� �h

2m

d

dx2
+ �jxj

�
e�bx

2

E =< H >= (
2b

�
)1=2

Z +1

�1

dx

�
�hb

m
(1� 2bx2)e�2bx

2

+ �jxje�2bx2
�

E =< H >=
hbar2

2m
+

�p
2�b

To �nd the lowest upper bound on eigenenergy of the ground state we'll minimize the < H > with respect

of b :

d < H >

dx
=

�h

2m
� �p

2�
b�3=2 = 0; (6)

b =

�
m�

�h2
p
2�

�2=3

Substituting into < H > expression we'll �nd the minimum of energy :

Emin =< H >min=
3m

2

�
�h�

m2
p
2�

�2=3

(7)

(b) For The quartic potential V (x) = �x4 we'll do the same steps and we'll �nd that :

< H >=
�h2b

2m
+ �

�
2b

�

�1=2 Z +1

�1

x4e�2bx
2

dx (8)

< H >=
�h2b

2m
+

3�

16b2

We'll minimize the above expression and we'll �nd the minimum average of the Hamiltonian < H > :

d < H >

db
=

�h

2m
� 3�

8b3
= 0 (9)

b =

�
3�m

4h2

�1=3
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Than, like before, we'll plug the b into < H > and we'll �nd the Emin :

Emin =< H >min=
9

8

�
3�m

4�h2

�
�2=3

(10)

3 Problem 7:7

Apply the tehniques of this Section to the H� and H+ ions (each has two electrons, like helium, but

nuclear charges Z = 1 and Z = 3, respectively). Find the e�ective (partially shielded) nuclear charge,

and determine the best upper bound on 4 Eg, for each case. Note: In the case of H� you should �nd

that < H > > �13; 6eV , which would appear to indicate that there is no bound state at all, since it

is energetically favorable for one electron to y o�, leaving behind a neutral hydrogen atom.This is not

entirely surprising, since the electrons are less strongly attractedto the nucleus than they are in helium,

and the electron repulsion tends to break the atom apart. However, it turns out to be incorrect. With a

more sophisticated trial wave function (see Problem7:16 ) it can be shownthat Eg < �13:6eV , and hence

that a bound state does exist. It's only barely bound, however, and there are no excited bound states, so

H� has no discrete spectrum (all transitions are to and from the continuum). As a result, it is di�cult

to study in the laboratory, although it exists in great abundance on the surface of the sun.

4 Solution

The trial wave function has the following form :

 (r1; r2) =
z3

�a3
e�Z(r1+r2)=a (11)

Then the Hamiltonian is given by :

H = � �h2

2m
(r2

1 +r2
2)�

e2

4��0

�
Z

r1
+
Z

r2

�
+

e2

4��0

�
(Z � 1)

r1
+

(Z � 1)

r2
+

1

jr1 � r2j
�

(12)

The expectation value of H will be :

< H >= 2Z2E1 + 2(Z � 1)

�
e2

4��0

�
<

1

r
> + < Vee > (13)
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The expectation value of Vee for an arbitrary Z will be :

Vee =
5Z

8a

�
e2

4��0

�
= �5Z

4
E1 (14)

From (13) and (14) we'll get the < H > :

< H >=

�
2Z2 � 4Z(Z � 1)� (5=4)Z

�
E1 (15)

< H >=

�
�2Z2 + (11=4)Z

�
E1

The lowest upper bound occurs when < H > is minimized :

d

dZ
< H >=

�
�4Z + (11=4)

�
E1 = 0; (16)

Z =
11

16
= 0:687

We'll plug the value of Z in (15),and we'll �nd for H� :

< H >=
11

16

�
�2(11

16
) + (

11

4
)

�
E1 = �2

�
11

16

�2

E1 = �12:87eV (17)

where Bohr energy E1 = �13:6eV .
For Li+ with Z = 3 the expectation value of H will be :

< H >=

�
2Z2 � 4Z(Z � 3)� (5=4)Z

�
E1; (18)

< H >=

�
�2Z2 + (43=4)Z

�
E1

The lowest upper bound is given by minimum of < H > :

d

dZ
< H >=

�
�4Z + (43=4)

�
E1 = 0; (19)

Z =
43

16
= 2:68
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The minimum expectation value of H will be than :

< H >min= 2Z2E1 = �195:2eV (20)

5 Problem 7:12

If the photon had a nonzero mass ( m 6= 0 ), the Coulomb potential would be replaced by a Yukawa

potential , of the form

V (r) = � e2

4��0

e��r

r
(21)

where � = mc=�h. With a trial wave function of your own devising, estimate the binding energy of a "

hydrogen" atom with this potential. Assume �a << 1, and give your answer correct to order (�a)2.

6 Solution

The perturbed Hamiltonian will be :

H = � �h2

2m
r2 � e2

4��0

e��r

r
(22)

We'll choose the hidrogen-like trial wave function  = Ae�br, where the normalization constant is given

by A =

�
1

�a3

�1=2

.In this case b = �1=a.Then the wave function will be :

 (r) =
1p
�a3

e�r=a (23)

The expectation value of H is equal with the sum of expectation values of kinetic energy < T > and

potential energy < V > :

< H >=< T > + < V > (24)

By de�nition the expectation value of an observable H is give by :

< H >=
<  jH j >
<  j > ; (25)
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The expectation value of the potential energy will be :

< V >= � e2

4�2�0a3

Z 2�

0

d�

Z �

0

sin�d�

Z
1

0

re�(�+2=a)rdr; (26)

< V >= � e2

�a3�0

Z
1

0

re�(�+2=a)rdr;

< V >= � e2

�a3�0

1

(�+ 2=a)2

The expectation value of the kinetic energy will be :

r2 =
1

r2
@

@r

�
r2
@ 

@r

�
=

1p
�a3

�
1

a2
� 2

ra

�
e�2r=a; (27)

< T >= � �h2

2m

Z 2�

0

d�

Z �

0

sin�d�

Z
1

0

1

�a4

�
r2

a
� 2r

�
e�2r=adr;

< T >=
4�h2

ma4

Z
1

0

re�2r=adr � 2�h2

ma5

Z
1

0

r2e�2r=adr;

< T >=
4�h2

ma4

�
a2

4

�
� 2�h2

ma5

�
a3

4

�
;

< T >=
�h2

2ma2

We'll plug (26) and (27) in (24) and we'll obtain :

< H >=
�h2

2ma2
� e2

�a3�0

1

(�+ 2=a)2
(28)

Assuming that �a << 1, we can expand (1 + �a=2)�2 in Taylor series :

(1 + �a=2)�2 = 1� 2

�
�a

2

�
+ 3

�
�a

2

�2

; (29)

(1 + �a=2)�2 = 1� �a+ 3

4
(�a)2

The expectation value of H becomes :

< H >=
�h2

2ma2
� e2

4�a�0

�
1� (�a) +

3

4
(�a)2

�
; (30)
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< H >=
�h2

2ma2
� e2

4�a�0
+

�e2

4��0
� 3(e�)2

4��0
a

The binding energy up to order (�a)2 is given exactly by the relation (30).

7 Problem 8:1

Use the WKB approximation to �nd the allowed energies (En) of an in�nite square well with a "shelf",

of height V0, extending half-way across (see Figure 6:3) :8<
:
V0; if 0 < x < a=2,
0; if a=2 < x < a,
1; otherwise.

(31)

Express your answer in terms of V0 and E
0
n � (n��h)=2ma2( the nth allowed energy for the "unperturbed"

in�nite square well, with no shelf). Assume that E0
1 > V0, but do not assume that En >> Vo. Compare

your result with what we got in Section 6:1:2, using �rst-order perturbation theory. note that they are in

agreement if either V0 is very small (the perturbation theory regime) orn is very large ( the semiclassical

WKB regime).

8 Solution

WKB approximation gives us that :

n��h =

Z a

0

p(x)dx; (32)

n��h =

Z a=2

0

p
2m(E � V0)dx+

Z a

a=2

p
2mE;

2n��h

a
p
2m

=
p
E � V0 +

p
E;

2n2�2�h2

a2m
= 2E � V0 + 2

p
E(E � V0);

We'll substitute the � = 2n2�2�h2

a2m , and then the expression will become :

(� + V0 � 2E)2 = 4E2 � 4EV0; (33)
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E =
(� + V0)

2

4�

If V0 << � then :

E =
�

4
+
V0
2

=
n2�2�h2

2ma2
(34)

which is the same result as on page 224.

9 Problem 8:3

Use Equation 8:22 to calculate the approximate transmission probability for a particle of energy E that

encounters a �nite square barrier of height V0 > E and width 2a. Compare the exact result ( Prob. 2:32)

in the WKB regime T << 1.

10 Solution

The equation 8:22 gives us that :

T = e�2 ; (35)

 =
1

�h

Z 2a

0

jp(x)jdx;

jp(x)j =
p
2m(V0 �E)

Then the transmission probability for a particle of energy E will be :

T = E�
4a

�h

p
2m(V0�E) (36)

From the result of problem 2:32 we have that :

T�1 = 1 +
V 2
0

4E(V0 �E)sinh
2

�
2a

�h

p
2m(V0 �E)

�
(37)

In the limit T�1 >> 1 we can approximate the function (sinhx)2 as follows :

sinh2x =

�
ex � e�x

2

�2

=
e2x

4
(38)
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In our case x = 2a
�h

p
2m(V0 �E), and if we'll plug into (37), we'll obtain :

T�1 =
V 2
0

16E(V0 �E)e
4a

�h

p
2m(V0�E) (39)

The exponents agree in both approximations.The factors in front are the same when V0 � 15E.
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