Homework \#5\#

Course 314,Introduction In Quantum Mechanics,Professor K. Griffioen
Department of Physics, College of William and Mary, Williamsburg, Virginia 23185

1 Problem 6.9

Consider a quantum system with just three linearly independent states. The Hamiltonian, in matrix form, is

$$
H=V_{0}\left(\begin{array}{ccc}
(1-\epsilon) & 0 & 0 \tag{1}\\
0 & 1 & \epsilon \\
0 & \epsilon & 2
\end{array}\right)
$$

where V_{0} is a constant and ϵ is some small number $(\epsilon \ll 1)$.
(a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian $(\epsilon=0)$.
(b) Solve for the exact eigenvalues of H. Expand each of them as a power series in ϵ, up to second order.
(c) Use first- and second- order nondegenerate perturbation theory to find the aproximate eigenvalue for the state that grows out of the nondegenerate eigenvector of H^{0}. Compare the exact result from (b).
(d) Use degenerate perturbation theory to find the first - order correction to the two initially degenerate eigenvalues. Compare the exact results.

2 Solution

(a) The perturbed Hamiltonian H' and the unperturbed Hamiltonian H^{0} will be :

$$
\begin{array}{ll}
H^{\prime}= & V_{0}\left(\begin{array}{ccc}
\epsilon & 0 & 0 \\
0 & 0 & \epsilon \\
0 & \epsilon & 0
\end{array}\right) \tag{2}\\
H^{0}= & V_{0}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{array}
$$

The eigenvectors and the eigenvalues of H^{0} are then :

$$
\begin{align*}
& \left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \rightarrow \beta_{1}=1 \tag{3}\\
& \left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \rightarrow \beta_{2}=1 \\
& \left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \rightarrow \beta_{3}=2
\end{align*}
$$

(b) We'll solve the classical eigenvalues problem and we will have :

$$
\begin{align*}
\left|\begin{array}{ccc}
(1-\epsilon)-\lambda & 0 & 0 \\
0 & 1-\lambda & \epsilon \\
0 & \epsilon & 2-\epsilon
\end{array}\right| & =0 \tag{4}\\
(1-\epsilon-\lambda)(1-\lambda)(2-\lambda)-\epsilon^{2}(1-\epsilon-\lambda) & =0 \\
1-\epsilon-\lambda & =0 \longrightarrow \lambda_{1}=1-\epsilon \\
(1-\lambda)(2-\lambda) & =\epsilon^{2} 7 \\
\lambda^{2}-3 \lambda+2-\epsilon & =0, \longrightarrow \lambda_{ \pm}=\frac{3}{2} \pm \frac{1}{2} \sqrt{1+4 \epsilon^{2}}
\end{align*}
$$

If we expand in Taylor series the solutions $\lambda_{ \pm}$we obtain :

$$
\begin{array}{ll}
\lambda_{-}= & 1-\epsilon^{2} \tag{5}\\
\lambda_{+}= & 2+\epsilon^{2}
\end{array}
$$

where we used that $:\left(1 \pm 4 \epsilon^{2}\right)^{1 / 2}=\frac{3}{2} \pm \frac{1}{2} \pm \epsilon^{2} \mp \epsilon^{4} \pm \ldots$.
So the exact eigenvalues, up to second order are :

$$
\begin{align*}
& \lambda_{1}=1-\epsilon \tag{6}\\
& \lambda_{2}=1-\epsilon^{2}
\end{align*}
$$

$$
\lambda_{3}=\quad 2+\epsilon^{2}
$$

y (c) In this case, $\lambda=2$ and using the non-degenerate perturbation theory we'll obtain :
$E^{0}=\quad 2$,
$E^{1}=\quad\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}-\epsilon & 0 & 0 \\ 0 & 0 & \epsilon \\ 0 & \epsilon & 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=0$,
$E^{2}=\frac{1}{1-2}\left[\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}-\epsilon & 0 & 0 \\ 0 & 0 & \epsilon \\ 0 & \epsilon & 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]^{2}+\frac{1}{1-2}\left[\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}-\epsilon & 0 & 0 \\ 0 & 0 & \epsilon \\ 0 & \epsilon & 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]^{2}=2+0 \epsilon+\epsilon^{2}+\ldots$

The result is the same with the result obtained from (b).
(d) Using the degenerate perturbation theory for the first - order corection for the initially degenerate eigenvalues we'll have;

$$
\begin{align*}
& \left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) H^{\prime}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=-\epsilon \tag{8}\\
& \left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) H^{\prime}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=0 \\
& \left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) H^{\prime}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=0 \\
& \left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) H^{\prime}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=0
\end{align*}
$$

We resolve the eigenvalues problem and we'll find the first - order correction :

$$
\begin{gather*}
\left(\begin{array}{cc}
-\epsilon & 0 \\
0 & 0
\end{array}\right) \Longrightarrow\left|\begin{array}{cc}
-\epsilon-\lambda & 0 \\
0 & 0
\end{array}\right|=0 \tag{9}\\
(\epsilon+\lambda) \lambda=0 \longrightarrow \begin{array}{c}
\lambda_{1}=0 \\
\lambda_{2}=-\epsilon
\end{array}
\end{gather*}
$$

Then the first-order correction of energy will be :

$$
E=\begin{align*}
& 1+0 \tag{10}\\
& 1-\epsilon
\end{align*}
$$

3 Problem 6.13

Find the (lowest-order)relativistic correction tothe energy levels of the one-dimensional harmonic oscillator.Hint:Use the technique of Problem 2.37.

4 Solution

The perturbed Hamiltonian is:

$$
\begin{equation*}
H^{\prime}=\frac{p^{4}}{8 m^{3} c^{2}} \tag{11}
\end{equation*}
$$

ψ_{n} is non-degenerate for the 1-d harmonic oscillator, and the energy eigenvalues are given by :

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \tag{12}
\end{equation*}
$$

Using the ladder operators to construct the momentum operator and implicit theperturbed Hamiltonian we'll obtain ;

$$
\begin{align*}
a_{ \pm} & =\quad \frac{1}{\sqrt{2 m}}(p+i m \omega x), \tag{13}\\
\left(a_{+}+a_{-}\right) & =\sqrt{\frac{2}{m}} p \\
p^{2} & =\frac{m}{2}\left(a_{+}+a_{-}\right)^{2}=\frac{m}{2}\left(a_{+}^{2}+a_{-}^{2}+a_{+} a_{-}+a_{-} a_{+}\right), \\
a_{+} \mid n> & =\sqrt{n+1} \mid n+1> \\
a_{-} \mid n> & =\sqrt{n} \mid n-1>
\end{align*}
$$

Then we use the definition of $\left\langle H^{\prime}>\right.$:

$$
\begin{equation*}
<H^{\prime}>=\frac{<n\left|H^{\prime}\right| n>}{<n \mid n>} \tag{14}
\end{equation*}
$$

From (8) we plug the momentum operator in the expression of Hamiltonian andwe obtain the following :

$$
\begin{align*}
\langle n| H^{\prime}|n\rangle & =\frac{1}{8 m^{3} c^{2}}\left(\langle n| p^{2}\right)\left(p^{2}|n\rangle\right) \tag{15}\\
& ={\operatorname{frac}(\hbar \omega)^{2} 32 m c^{2}\left[(n+1)(n+2)+n(n-1)+n^{2}+(n+1)^{2}+2 n(n+1)\right]}=\frac{(\hbar \omega)^{2}}{32 m c^{2}}\left(6 n^{2}+6 n+3\right) \\
\left\langle H^{\prime}\right\rangle & =\frac{3(\hbar \omega)^{2}}{32 m c^{2}}\left(2 n^{2}+2 n+1\right)
\end{align*}
$$

5 Problem 6.19

Consider the (eight) $n=2$ states, $\mid 2 l j m_{j}>$. Find the energy of each state, under weak-field Zeeman splitting, and construct a diagram like Figure 6.11 to show how the energies evolve as $B_{e x t}$ increases. Label each line clearly, and indicate its slope.

6 Solution

For the $n=2$ we have the state $\mid 2, l, j, m_{j}>$ and the energies are given by :

$$
\begin{equation*}
E_{z}^{\prime}=\mu_{B} B_{e x t} g_{j} m_{j} \tag{16}
\end{equation*}
$$

The corresponding energies with the degenerate levels, Lande' coefficients, and corresponding quantum numbers $\left(l, j, m_{j}\right)$ will be :

$$
\begin{array}{ccc}
l=0, j=\frac{1}{2} & \longrightarrow & g_{s}=1+\frac{\frac{1}{2} \frac{3}{2}+\frac{3}{4}-0}{\frac{3}{2}}=2 \tag{17}\\
E_{z}^{\prime}= & 2\left(\pm \frac{1}{2}\right) \mu_{B} B_{e x t} \\
l=1, j=\frac{1}{2} & \longrightarrow & g_{s}=1+\frac{\frac{3}{4}+\frac{3}{4}-2}{\frac{3}{2}}=\frac{2}{3} \\
E_{z}^{\prime}= & \frac{2}{3}\left(\pm \frac{1}{2}\right) \mu_{B} B e x t \\
l=1, j=\frac{3}{2} & \longrightarrow & g_{s}=\frac{\frac{15}{4}+\frac{3}{4}-2}{\frac{15}{2}}=\frac{4}{3}
\end{array}
$$

$$
E_{z}^{\prime}=\quad \frac{4}{3}\left(\pm \frac{1}{2}, \pm \frac{3}{2}\right) \mu_{B} B_{e x t}
$$

The diagram of weak-field Zeeman splitting looks as follows:

References

[1] D. J. Griffiths, Introduction To Quantum Mechanics, 1995

