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Homework #4#

Course 314,Introduction In Quantum Mechanics,Professor K. Griffioen

Department of Physics, College of William and Mary, Williamsburg, Virginia 23185

1 Problem 6.2

For the harmonic oscillator [V (z) = (1/2)kz?], the allowed energies are :

E,=Mn+1/2)hw,(n=0,1,2,...), (1)

where w = \/E/m is the classical frequency. now suppose the spring constant increases slightly :
k — (1 + €)k. ( Perhaps we cool the spring, so it becomes less flexible.)

(a) Find the ezact new energies (trivial, in this case ). Expand your formula as a power series in €, up
to second order.

(b) Now calculate the first- order perturbation in the energy, using Equation 6.9. What is H”? Compare
your result with part (a). Hint: It is not necessary - in fact, it is not permitted - to calculate a single

integral in doing this problem.

2 Solution

(a)

1
1
E = (n+ §)hw
k
w= —
m
/ 1 2
Vi= 5(14‘6)/471’



then the perturbation of energy will be :

E=  (n+h, (3)
W= (a jne)k =V1+ew
F=  (t))i+s-5+.)

and T+ €=1+% — £ + ..., represent the Taylor expansion of (1 + €)/2.

(b) The first-order correction of energy is given by :

1 1
E) =< u|H' |t >=< 1/Jn|§k:e:r2|1/)n >=e< 1/Jn|§k:a:2|1/)n >=e<V > (4)

The virial theorem states that :

_ d 2
2< T >= <r.VV >=< x.%V >=< m.ikm >=2<V > but (5)

= <V >+ <T > then
1

1
<V>— §(TL+ i)hw
€ 1
F, = - —
1 2(n+2)hw

This result is just what we get for the € power of the exact expansion.

3 Problem 6.3

Two identical bosons are placed in an infinite square well( Equation 2.15.) They interact weakly with

one another, via the potential

V(Z’l,l’g) = —aVoé(xl — 1’2) (6)

(where Vj is a constant with dimensions of energy and a is the width of the well).

(a) First, ignoring the interaction between particles, find the ground state and first excited state - both



the wave functions and the associated energies.
(b) Use first - order perturbation theory to calculate the affect of the particle - particle interaction on

the ground and first excited state energies.

4 Solution

(a)

V(zy,z2) = —aVpd(zy — x2), (7)
Yn(z) = \/gsm@
a a
B, = n2r2h?
2ma?

where 1,, represent the general wave function which characterize the bosons in an infinite square well
potential.

The ground state will have the following wave function :

bys = Yr(21)9a(22) = %S’”%sm@ 8)

a

The associated ground state energy will be :

w2h?

E,s =
g ma?

For the first excited state the wave function will be :

T % <¢1 (x1)2(x2) + 91 (a:2)z/12(:v1)> = ? <sm%sm 27;3:2 + sin 271:1 sm%) (10)

The corresponding energy for the first excited state will be :

(11)

(b) Under the interaction between particles the first-order correction of the energy in the ground state

will be :



E!I]s = /0 dl‘l /0 1[]1 (1‘1)21/11(1’2)2(—GV0)6(1'1 - Z’Q)dl’g

= —aVo/ 1/11(1'1)4d1'1
0

and for the first excited state :

2
a

Ba= (2) [Cdn [ Catisen —a) (vl + (o)) de (13)
(3) [ ] (7 7

) [ [ oo gt

8 . mx2 | 27T
= ——W sin— sin——dx
a 0 a a

By = -2V

5 Problem 6.7

Consider a particle of mass m that is free to move in a one - dimensional region of length L that closes

onitself ( for instance, a bead which slides frictionlessly on a circular wire of circumference L ; Problem

2.43 ).

(a) Show that the stationary states can be written in the form

L oriner
x) = e (—=L/2 < x < LJ2),
where n = 0, £1, £2, ..., and the allowed energies are

2 (nrh\?>
E,=—|—|.
()

Notice that - with the exception of the ground state (n = 0) - these are all doubly degenerate.

Xcy(b) Now suppose we introduce the perturbation



H = —Voe =/, (16)

where a << L. ( This puts a little ” dimple ” in the potential at = 0, as though we bent the wire
slightly to make a ” trap. ”) Find the first-order correction to E,, using Equation 6.26. Hint: To
evaluate the integrals, exploit the fact that a« << L to extend the limits from +L/2 to +oco ; after all, H'
is essentially zero outside —a << x << a.

(c) What are the ” good ” linear combinations of ¢, and 9_,, for this problem ? Show that with these
states you get the first-order correction using Equation 6.9.

(d) Find a Hermitin operator A that fits the requirement of the theorem, and show that the simultaneous

eigenstates of H? and A are precisely the ones you found in (c).

6 Solution

(a) From Shrodinger equation we have :

B d2y
Tomdar ~ OO (17
2mE
K = peal
d? )
W +k 1/1 = 0,
— e:l:ikz

Applying the boundary condition ¢ (z + L) = ¢(z), we’ll find :

pTik(@+L) _ eFike (18)
ptike HikD _ eFike
eTkL _ 1,
kL = 2mn,n =0,£1,+2, ...



Applying the normalization condition of wave function we’ll have :

L/2
r = ,
DHod 1 19
—L/2
L/2
/ Aldx = 1,
~L/2
1
A= —
VL
Then we’ll plug into ¢ = e*** and we’ll obtain :
R L s (20)
n — ) - ) ) y st
VL
no_ PR _R@on’ _ 2 (nhx 2
" 2m  2mL?  m\ L

(b) Under the small perturbation H' = —Vpe™* /%" where a << L, the first-order correction of B, is

given by :

1
E'Ii = 5 [Waa + Wiy = \/(Waa - Wbb)2 + 4|Wab|2:| , (21)

where the matrix elements W,,, Wiy, Wap = Wp, can be computed as follows :

L/2 Vo [P Y
Waa =W =  <tolH'Woo>= [ @HYgde=—=[ e /"da, (22)
—L/2 L —L/2
Vo [L/2 v, rL/2 .
Wao = Wia = < tha| H'|thy >=< by |H'||psiq >= —— W H Yyda = ——2 e dmina/Lo—a®/a g
L /2 L —L/2
1 .
0 = _e+2mnac/L
= I
_ 1 —2minz /L
Vo = sqrtLe
We can make the approximation L/2 — oo, since L >> a, so vthen we’ll have :
aVo/m
Waa = Wy = - 0\/_ (23)



Vi
Wab = Wba = _—a OL\/%e—4ﬂ'2n2a2/L2

We’ll make the subscript e—4mn’a®/L* — €, and then the first - order correction of E, will be :

E, = —“TV"(1 Fo) (24)

(c) We resolve the eigenvalue problem knowing that the transformation matrix has the following form :

C(Waa Wa) _ aVom (1 e
W_<Wba Wbb>_ l (6 1> (25)

Then we’ll determine the eigenstates of the matrix operator W :

()

'an — <627rimc/L + e—27rimc/L (27)

2minz/L _ _—2minz/L

e

N——

1
Yon = E(e

(d) We have to find an operator A that fits the requirement to be Hermitian, and the H and A to have

the same eigenstates :

At = A4, (28)
{A, H} - 0
Under theorem conditions :
Az/’n = h/}na (29)



Ay = 2

So the operator A takes x to the - x (parity operator), and since e=(-2)*/a® = e*””2/“2, the eigenfunctions

Y+, are simultaneous eigenstates for A and HP.
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