Homework \#4\#

Course 314,Introduction In Quantum Mechanics,Professor K. Griffioen Department of Physics, College of William and Mary, Williamsburg, Virginia 23185

1 Problem 6.2

For the harmonic oscillator $\left[V(x)=(1 / 2) k x^{2}\right]$, the allowed energies are :

$$
\begin{equation*}
E_{n}=(n+1 / 2) \hbar \omega,(n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

where $\omega=\sqrt{k} / m$ is the classical frequency. now suppose the spring constant increases slightly : $k \rightarrow(1+\epsilon) k$. (Perhaps we cool the spring, so it becomes less flexible.)
(a) Find the exact new energies (trivial, in this case). Expand your formula as a power series in ϵ, up to second order.
(b) Now calculate the first- order perturbation in the energy, using Equation 6.9. What is H^{\prime} ? Compare your result with part (a). Hint: It is not necessary - in fact, it is not permitted - to calculate a single integral in doing this problem.

2 Solution

(a)

$$
\begin{align*}
V & =\frac{1}{2} k x^{2} \tag{2}\\
E & =\left(n+\frac{1}{2}\right) \hbar \omega \\
\omega & =\sqrt{\frac{k}{m}} \\
V^{\prime} & =\frac{1}{2}(1+\epsilon) k x^{2}
\end{align*}
$$

then the perturbation of energy will be :

$$
\begin{align*}
E^{\prime} & =\left(n+\frac{1}{2}\right) \hbar \omega^{\prime} \tag{3}\\
\omega^{\prime} & =\sqrt{\frac{(1+\epsilon) k}{m}}=\sqrt{1+\epsilon} \omega \\
E^{\prime} & =\left(n+\frac{1}{2}\right)(\hbar \omega)\left(1+\frac{\epsilon}{2}-\frac{\epsilon^{2}}{8}+\ldots\right)
\end{align*}
$$

and $\sqrt{1+\epsilon}=1+\frac{\epsilon}{2}-\frac{\epsilon}{8}+\ldots$, represent the Taylor expansion of $(1+\epsilon)^{1 / 2}$.
(b) The first-order correction of energy is given by :

$$
\begin{equation*}
E_{1}=<\psi_{n}\left|H^{\prime}\right| \psi_{n}>=<\psi_{n}\left|\frac{1}{2} k \epsilon x^{2}\right| \psi_{n}>=\epsilon<\psi_{n}\left|\frac{1}{2} k x^{2}\right| \psi_{n}>=\epsilon<V> \tag{4}
\end{equation*}
$$

The virial theorem states that:

$$
\begin{align*}
2<T> & =\quad<\bar{r} . \bar{\nabla} V>=<x \cdot \frac{d}{d x} V>=<x \cdot \frac{2}{2} k x>=2<V>, \text { but } \tag{5}\\
E & =\quad<V>+<T>, \text { then } \\
<V> & =\frac{1}{2}\left(n+\frac{1}{2}\right) \hbar \omega \\
E_{1} & =\frac{\epsilon}{2}\left(n+\frac{1}{2}\right) \hbar \omega
\end{align*}
$$

This result is just what we get for the ϵ power of the exact expansion.

3 Problem 6.3

Two identical bosons are placed in an infinite square well(Equation 2.15.) They interact weakly with one another, via the potential

$$
\begin{equation*}
V\left(x_{1}, x_{2}\right)=-a V_{0} \delta\left(x_{1}-x_{2}\right) \tag{6}
\end{equation*}
$$

(where V_{0} is a constant with dimensions of energy and a is the width of the well).
(a) First, ignoring the interaction between particles, find the ground state and first excited state - both
the wave functions and the associated energies.
(b) Use first - order perturbation theory to calculate the affect of the particle - particle interaction on the ground and first excited state energies.

4 Solution

(a)

$$
\begin{align*}
V\left(x_{1}, x_{2}\right) & =-a V_{0} \delta\left(x_{1}-x_{2}\right) \tag{7}\\
\psi_{n}(x) & =\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} \\
E_{n} & =\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
\end{align*}
$$

where ψ_{n} represent the general wave function which characterize the bosons in an infinite square well potential.

The ground state will have the following wave function :

$$
\begin{equation*}
\psi_{g s}=\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)=\frac{2}{a} \sin \frac{\pi x_{1}}{a} \sin \frac{\pi x_{2}}{a} \tag{8}
\end{equation*}
$$

The associated ground state energy will be :

$$
\begin{equation*}
E_{g s}=\frac{\pi^{2} \hbar^{2}}{m a^{2}} \tag{9}
\end{equation*}
$$

For the first excited state the wave function will be :

$$
\begin{equation*}
\psi_{1 s t}=\frac{1}{\sqrt{2}}\left(\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)+\psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right)=\frac{\sqrt{2}}{a}\left(\sin \frac{\pi x_{1}}{a} \sin \frac{2 \pi x_{2}}{a}+\sin \frac{2 \pi x_{1}}{a} \sin \frac{\pi x_{2}}{a}\right) \tag{10}
\end{equation*}
$$

The corresponding energy for the first excited state will be :

$$
\begin{equation*}
E_{1 s t}=\frac{5 \pi^{2} \hbar^{2}}{2 m a^{2}} \tag{11}
\end{equation*}
$$

(b) Under the interaction between particles the first-order correction of the energy in the ground state will be :

$$
\begin{align*}
E_{g s}^{\prime} & =\quad \int_{0}^{a} d x_{1} \int_{0}^{a} \psi_{1}\left(x_{1}\right)^{2} \psi_{1}\left(x_{2}\right)^{2}\left(-a V_{0}\right) \delta\left(x_{1}-x_{2}\right) d x_{2} \tag{12}\\
& =\quad-a V_{0} \int_{0}^{a} \psi_{1}\left(x_{1}\right)^{4} d x_{1} \\
& =\quad-a V_{0}\left(\frac{2}{a}\right)^{2} \int_{0}^{a} \sin \frac{\pi x^{4}}{a} d x \\
& =\quad-\frac{3}{2} V_{0}
\end{align*}
$$

and for the first excited state :

$$
\begin{align*}
E_{1 s t} & =\left(\frac{2}{a}\right)^{2} \int_{0}^{a} d x_{1} \int_{0}^{a}\left(-a V_{0}\right) \delta\left(x_{1}-x_{2}\right)\left(\frac{1}{\sqrt{2}} \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)+\frac{1}{\sqrt{2}} \psi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right)^{2} d x_{2} \tag{13}\\
& =\left(\frac{2}{a}\right)^{2} \int_{0}^{a} d x_{1} \int_{0}^{a}\left(-a V_{0}\right)\left(\frac{2}{s q r t 2} \psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{1}\right)\right)^{2} d x_{1} \\
& =-\frac{8}{a} V_{0} \int_{0}^{a} \sin \frac{\pi x^{2}}{a} \sin \frac{2 \pi x}{a} d x \\
E_{1 s t} & =-2 V_{0}
\end{align*}
$$

5 Problem 6.7

Consider a particle of mass m that is free to move in a one - dimensional region of length L that closes onitself (for instance, a bead which slides frictionlessly on a circular wire of circumference L; Problem 2.43).
(a) Show that the stationary states can be written in the form

$$
\begin{equation*}
\psi_{n}(x)=\frac{1}{\sqrt{L}} e^{2 \pi i n x L},(-L / 2<x<L / 2) \tag{14}
\end{equation*}
$$

where $n=0, \pm 1, \pm 2, \ldots$, and the allowed energies are

$$
\begin{equation*}
E_{n}=\frac{2}{m}\left(\frac{n \pi \hbar}{L}\right)^{2} \tag{15}
\end{equation*}
$$

Notice that - with the exception of the ground state $(n=0)$ - these are all doubly degenerate.
Xcy(b) Now suppose we introduce the perturbation

$$
\begin{equation*}
H^{\prime}=-V_{0} e^{-x^{2} / a^{2}} \tag{16}
\end{equation*}
$$

where $a \ll L$. (This puts a little " dimple "in the potential at $x=0$, as though we bent the wire slightly to make a " trap. ") Find the first-order correction to E_{n}, using Equation 6.26. Hint: To evaluate the integrals, exploit the fact that $a \ll L$ to extend the limits from $\pm L / 2$ to $\pm \infty$; after all, H^{\prime} is essentially zero outside $-a \ll x \ll a$.
(c) What are the "good" linear combinations of ψ_{n} and ψ_{-n} for this problem? Show that with these states you get the first-order correction using Equation 6.9.
(d) Find a Hermitin operator A that fits the requirement of the theorem, and show that the simultaneous eigenstates of H^{0} and A are precisely the ones you found in (c).

6 Solution

(a) From Shrodinger equation we have :

$$
\begin{align*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}} & =\quad E \psi \tag{17}\\
k^{2} & =\frac{2 m E}{\hbar^{2}} \\
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi & =0 \\
\psi & =e^{ \pm i k x}
\end{align*}
$$

Applying the boundary condition $\psi(x+L)=\psi(x)$, we'll find :

$$
\begin{align*}
e^{ \pm i k(x+L)} & =e^{ \pm i k x} \tag{18}\\
e^{ \pm i k x} e^{ \pm i k L} & =e^{ \pm i k x} \\
e^{ \pm i k L} & =1, \\
k L & =2 \pi n, n=0, \pm 1, \pm 2, \ldots
\end{align*}
$$

Applying the normalization condition of wave function we'll have :

$$
\begin{align*}
\int_{-L / 2}^{L / 2} \psi^{*} \psi d x & =1 \tag{19}\\
\int_{-L / 2}^{L / 2} A^{2} d x & =1 \\
A & =\frac{1}{\sqrt{L}}
\end{align*}
$$

Then we'll plug into $\psi=e^{ \pm i k x}$ and we'll obtain :

$$
\begin{align*}
\psi_{n} & =\frac{1}{\sqrt{L}} e^{2 \pi i n x / L}, n=0, \pm 1, \pm 2, \ldots \tag{20}\\
E_{n} & =\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2}(2 \pi) n^{2}}{2 m L^{2}}=\frac{2}{m}\left(\frac{n \hbar \pi}{L}\right)^{2}
\end{align*}
$$

(b) Under the small perturbation $H^{\prime}=-V_{0} e^{-x^{2} / a^{2}}$, where $a \ll L$, the first-order correction of E_{n} is given by :

$$
\begin{equation*}
E_{ \pm}^{\prime}=\frac{1}{2}\left[W_{a a}+W_{b b} \pm \sqrt{\left(W_{a a}-W_{b b}\right)^{2}+4\left|W_{a b}\right|^{2}}\right] \tag{21}
\end{equation*}
$$

where the matrix elements $W_{a a}, W_{b b}, W_{a b}=W_{b a}$ can be computed as follows :

$$
\begin{aligned}
W_{a a}=W_{b b} & =\quad<\psi_{a}\left|H^{\prime}\right| \psi_{a}>=\int_{-L / 2}^{L / 2} \psi_{a}^{*} H^{\prime} \psi_{a} d x=-\frac{V_{0}}{L} \int_{-L / 2}^{L / 2} e^{-x^{2} / a^{2}} d x \\
W_{a b}=W_{b a} & =<\psi_{a}\left|H^{\prime}\right| \psi_{b}>=<\psi_{b}\left|H^{\prime}\right| \left\lvert\, p s i_{a}>=-\frac{V_{0}}{L} \int_{L / 2}^{L / 2} \psi_{a}^{*} H^{\prime} \psi_{b} d x=-\frac{V_{0}}{L} \int_{-L / 2}^{L / 2} e^{-4 \pi i n x / L} e^{-x^{2} / a^{2}} d x\right. \\
\psi_{a} & =\frac{1}{\sqrt{L}} e^{+2 \pi i n x / L} \\
\psi_{b} & =\frac{1}{s q r t L} e^{-2 \pi i n x / L}
\end{aligned}
$$

We can make the approximation $L / 2 \rightarrow \infty$, since $L \gg a$, so vthen we'll have :

$$
\begin{equation*}
W_{a a}=W_{b b}=\quad-\frac{a V_{0} \sqrt{\pi}}{L} \tag{23}
\end{equation*}
$$

$$
W_{a b}=W_{b a}=\quad-\frac{a V_{0} \sqrt{\pi}}{L} e^{-4 \pi^{2} n^{2} a^{2} / L^{2}}
$$

We'll make the subscript $e^{-4 \pi^{2} n^{2} a^{2} / L^{2}}=\epsilon$, and then the first - order correction of E_{n} will be :

$$
\begin{equation*}
E_{ \pm}^{\prime}=-\frac{a V_{0}}{L}(1 \mp \epsilon) \tag{24}
\end{equation*}
$$

(c) We resolve the eigenvalue problem knowing that the transformation matrix has the following form :

$$
W=\left(\begin{array}{ll}
W_{a a} & W_{a b} \tag{25}\\
W_{b a} & W_{b b}
\end{array}\right)=-\frac{a V_{0} \pi}{l}\left(\begin{array}{cc}
1 & \epsilon \\
\epsilon & 1
\end{array}\right)
$$

Then we'll determine the eigenstates of the matrix operator W :

$$
\begin{align*}
\left(\begin{array}{cc}
1-\epsilon & \epsilon \\
\epsilon & 1-\epsilon
\end{array}\right)\binom{\alpha}{\beta} & =0 \longrightarrow \frac{1}{\sqrt{L}}\binom{1}{-1} \tag{26}\\
\left(\begin{array}{cc}
-\epsilon & \epsilon \\
\epsilon & -\epsilon
\end{array}\right)\binom{\alpha}{\beta} & =0 \longrightarrow \frac{1}{\sqrt{L}}\binom{1}{1}
\end{align*}
$$

The "good" combinations of ψ_{n} and ψ_{-n} will be :

$$
\begin{align*}
\psi_{n} & =\frac{1}{\sqrt{2} L}\left(e^{2 \pi i n x / L}+e^{-2 \pi i n x / L}\right) \tag{27}\\
\psi_{-n} & =\frac{1}{\sqrt{2} L}\left(e^{2 \pi i n x / L}-e^{-2 \pi i n x / L}\right)
\end{align*}
$$

(d) We have to find an operator A that fits the requirement to be Hermitian, and the H^{0} and A to have the same eigenstates:

$$
\begin{align*}
A^{\dagger} & = & A, \tag{28}\\
{\left[A, H^{\prime}\right] } & = & 0
\end{align*}
$$

Under theorem conditions:

$$
\begin{equation*}
A \psi_{n}=1 \psi_{n} \tag{29}
\end{equation*}
$$

$$
A \psi_{-n}=\quad-1 \psi_{-n}
$$

So the operator A takes x to the -x (parity operator), and since $e^{-(-x)^{2} / a^{2}}=e^{-x^{2} / a^{2}}$, the eigenfunctions $\psi_{ \pm n}$ are simultaneous eigenstates for A and H^{0}.

References

[1] D. J. Griffiths, Introduction To Quantum Mechanics, 1995

