Problem Set \#3

Physics 314: Introduction to Quantum Mechanics Solutions by Cornel Butuceanu
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

1 Problem 5.22

Obtain Equation 5.75 by induction. The combinatorial question is this: How many different ways can you put N identical balls into d baskets (never mind the subscript n for this problem). You could stick all N of them into the third basket Γ or all but one in the second basket and one in the fifth Γ or two in the first and three in the third and all the rest in the seventhएetc. Work it out explicitly for the cases $N=1, N=2, N=3$, and $N=4$; by the stage you should be able to deduce the general formula.

1.1 Solution

$$
\begin{equation*}
P_{\mathbf{n}}=\frac{1}{\mathbf{N}_{\mathbf{n}}!} \frac{\left(\mathbf{N}_{\mathbf{n}}+\mathbf{d}_{\mathbf{n}}-\mathbf{1}\right)}{\left(\mathbf{d}_{\mathbf{n}}-1\right)} \tag{1}
\end{equation*}
$$

Where P_{n} represent the number of distinct ways of assigning the N_{n} particles to the d_{n} one-particle states in the nth bin.

2 Problem 5.23

Use the method of Lagrange multipliers to find the area of the largest rectangle Γ with sides parallel to the axes Γ that can be inscribed in the ellipse $(x / a)^{2}+(y / b)^{2}=1$.

2.1 Solution

The function to be maximized has the next form:

$$
\begin{equation*}
F(x, y)=4 x y \tag{3}
\end{equation*}
$$

under following constraint:

$$
\begin{equation*}
g(x, y)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{4}
\end{equation*}
$$

and using Lagrange multipliers method we'll have:

$$
\begin{align*}
G(x, y) & =F(x, y)+\lambda g(x, y) \tag{5}\\
\frac{\partial G}{\partial x} & =0 \\
\frac{\partial G}{\partial y} & =0 \\
\frac{\partial G}{\partial \lambda} & =0
\end{align*}
$$

λ represent the Lagrange multiplier. After computing on components we'll have:

$$
\left\{\begin{array}{l}
y+\lambda\left(\frac{2 x}{a^{2}}\right)=0 \tag{6}\\
x+\lambda\left(\frac{2 y}{b^{2}}\right)=0 \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0
\end{array}\right.
$$

we'll determine three unknowns λ, x, y :

$$
\begin{equation*}
\lambda=2 a b, x=\frac{a}{\sqrt{2}}, y=\frac{b}{\sqrt{2}} \tag{7}
\end{equation*}
$$

The area of the largest rectangle That can be inscribed in that ellipse will be equal with numerical value of $F(x, y)=x y$ Гat the point described of coordinates $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$.

$$
\begin{equation*}
F_{\max }=\frac{a b}{2} \tag{8}
\end{equation*}
$$

3 Problem 5.24

(a) Find the percent error in Stirling's approximation for $z=10$.
(b) What is the smallest integer z such that the error is less than 1 percent.

3.1 Solution

In Stirling's approximation:

$$
\begin{equation*}
\ln (z!) \approx z \ln (z)-z, \text { for } z \gg 1 \tag{9}
\end{equation*}
$$

The percent error in Stirling's approximation for $z=10$ is 13.76 Г and the smallest integer z for which the error is less than 1 percent is 90 .

Table 1: Comparison of Stirling's formula with the exact result

\mathbf{Z}	Error(percent)
10	13.76
15	8.16
20	5.71
25	4.36
30	3.51
35	2.92
40	2.50
45	2.18
50	1.93
55	1.73
60	1.57
65	1.43
70	1.32
75	1.22
80	1.13
85	1.06
90	0.99

4 Problem 5.28

Derive the Stefan-Boltzmann formula for the total energy density in blackbody radiation:

$$
\begin{equation*}
\frac{E}{V}=\left(\frac{\pi^{2} k_{B}^{4}}{15 \hbar^{3} c^{3}}\right) T^{4}=\left(7.57 \times 10^{16} \mathrm{Jm}^{-3} \mathrm{~K}^{-4}\right) T^{4} \tag{10}
\end{equation*}
$$

4.1 Solution

The energy density $\rho(\omega)$ is defined by:

$$
\begin{equation*}
\rho(\omega)=\frac{\hbar \omega^{3}}{\pi^{2} c^{3}\left(e^{\hbar \omega / k_{b} T}-1\right)} \tag{11}
\end{equation*}
$$

The total energy in blackbody radiation becomes:

$$
\begin{align*}
\frac{E}{V} & =\quad \int_{0}^{\infty} \rho(\omega) d \omega=\int_{0}^{\infty} \frac{\hbar \omega^{3} d \omega}{\pi^{2} c^{3}\left(e^{\hbar \omega / k_{b} T}-1\right)} \tag{12}\\
\frac{E}{V} & =\frac{\hbar}{\pi^{2} c^{3}} \int_{0}^{\infty} \omega^{3}\left(e^{\hbar \omega / k_{B} T}-1\right)^{-1} d \omega
\end{align*}
$$

Let's make the substitutions:

$$
\begin{align*}
x & =\frac{\hbar \omega}{k_{b} T} \tag{13}\\
\omega^{3} & =\frac{x k_{b} T}{\hbar}
\end{align*}
$$

after differentiation we'll obtain:

$$
\begin{align*}
& d x=\frac{\hbar d \omega}{k_{b} T}, \tag{14}\\
& d \omega=\quad\left(\frac{k_{b} T}{\hbar}\right) d x
\end{align*}
$$

we plug into(9) Гand the integral transforms as follows:

$$
\begin{align*}
& \frac{E}{V}=\frac{k_{B}^{4} T^{4}}{\pi^{2} c^{3} \hbar^{3}} \int_{0}^{\infty} \frac{x^{3}}{\left(e^{x}-1\right)} d x \tag{15}\\
& \frac{E}{V}=\frac{k_{B}^{4} T^{4}}{\pi^{2} c^{3} \hbar^{3}} \Gamma(4) \zeta(4), \\
& \frac{E}{V}=\frac{k_{B}^{4} T^{4}}{\pi^{2} c^{3} \hbar^{3}}\left(\frac{\pi^{4}}{15}\right)=\left(\frac{\pi^{2} k_{B}^{4}}{15 c^{3} \hbar^{3}}\right) T^{4}
\end{align*}
$$

where Γ is Euler's gamma function and ζ is the Riemann zeta function Γ and also we used the result from Problem 5.26:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{s-1}}{\left(e^{x}-1\right)} d x=\Gamma(s) \zeta(s) \tag{16}
\end{equation*}
$$

For our case $s=4$ and $\int_{0}^{\infty} \frac{x^{3}}{\left(e^{x}-1\right)}=\frac{\pi^{4}}{15}$.

References

[1] D. J. GriffithsTIntroduction to Quantum MechanicsT1995

