Problem Set #1

Physics 314: Introduction to Quantum Mechanics Solutions by Cornel Butuceanu Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

1 Problem 5.13

The density of copper is 8.96 gm/cm^3 , and its atomic weight is 63.5 gm/mole.

(a) Calculate the Fermi energy for copper (equation 5.43). Assume q = 1, and give your answer in electron volts.

(b) What is the corresponding electron velocity [set $E_F = (1/3)mv^2$]? Is it safe to assume that the electrons in copper are nonrelativistic?

(c) At what temperature would the characteristic thermal energy $(k_B T, \text{where} k_B \text{ is the Boltzmann} \text{constant} \text{ and } T$ is the Kelvin temperature) equal the Fermi energy, for copper? Note: This is called the **Fermi temperature**. As long as the *actual* temperature is substantially below the Fermi temperature, the material can be regarded as "cold," with most of the electrons in the ground-state configuration. Since the melting point of copper is 1356K, solid copper is always cold.

(d) Calculate the degeneracy pressure (Equation 5.46) of copper, in the gas model.

1.1 Solution

Given:

$$E_F = \frac{\hbar^2}{2m_e} (3\rho\pi^2)^{2/3} \tag{1}$$

where

$$\rho_{Cu} = 8.96 \frac{g}{cm^3}$$
(2)
$$A_{Cu} = 63.5 \frac{g}{mole}$$

$$N_A = 6.022 \times 10^{23} \text{mole}^{-1}$$

$$h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$$

$$m_e = 9.109 \times 10^{-31} \text{kg}$$

$$k_B = 1.38 \times 10^{-23} \text{J/K}$$

$$q = 1.$$

(a)

We also know that:

$$\rho = \frac{Nq}{V} = \frac{1}{V_{Cu}} \tag{3}$$

$$m_{Cu} = \rho_{Cu} V_{Cu} = \frac{A}{N_A}$$
$$V_{Cu} = \frac{A}{N_A \rho_{Cu}}$$
$$\rho = \frac{N_A \rho_{Cu}}{A}$$

and substituting this into Eq. 1 we find that

$$E_F = \frac{h^2}{8\pi^2 m_e} \left(3\pi^2 \frac{N_A \rho_{Cu}}{A}\right)^{2/3}$$
(4)

Numerical result: $E_F = 1.13022 \times 10^{-18} \text{J} = 7.05 \text{ eV}$ (b)

$$E_F = \frac{mv^2}{2}$$

$$v_e = \sqrt{\frac{2E_F}{m_e}}$$
(5)

Numerical result: $v_e = 1.575 \times 10^6$ m/s, but $c = 3 \times 10^8$ m/s, so we'll then have $v_e/c = 5.25 \times 10^{-3}$. Conclusion: We can assume that the electrons in copper are nonrelativistic. (c)

$$E_T = k_B T$$

$$E_F = E_T$$

$$T_F = \frac{E_F}{k_B}$$
(6)

Numerical solution: $T_F = 8.18 \times 10^4 K$, $T_F >> T_M$ (melting temperature). (d)

$$P = \frac{(3\pi^2)^{2/3}h^2}{20m_e\pi^2}\rho^{5/3}$$

$$P = (\frac{3}{\pi})^{2/3}\frac{h^2}{20m_e}\rho^{5/3}$$
(7)

Numerical solution: $P = 3.83 \times 10^{10} \text{N/m}^2$.

2 Problem 5.14

The **bulk modulus** of substance is the ratio of a small decrease in pressure to the resulting fractional increase in volume:

$$B = -V\frac{dP}{dV} \tag{8}$$

Show that B = (5/3)P, in the free electron gas model, and use your result in Problem 5.13 (d) to estimate the bulk modulus of copper. *Note*: the observed value is $13.4 \times 10^{10} N/m^2$, but don't expect perfect agreement-after all, we're neglecting all electron-nucleus and electron-electron forces! Actually, it is rather surprising that this calculation comes as close as it does.

2.1 Solution

$$B = -V \frac{dP}{dV}$$
(9)

$$P = \frac{2}{3} \frac{E_{tot}}{V}$$

$$\frac{dP}{dV} = \frac{2}{3} (\frac{E_{tot}}{V})'$$

$$= \frac{2}{3} [(\frac{1}{V})' E_{tot} + \frac{1}{V} (E_{tot})']$$

$$= -\frac{2}{3} [\frac{1}{V^2} E_{tot} + \frac{2}{3} \frac{1}{V^2} E_{tot}]$$

$$= -\frac{10}{9} \frac{E_{tot}}{V^2} = -\frac{5}{3} \frac{P}{V}$$

$$B = (-V) \frac{dP}{dV} = (-V) (-\frac{5}{3} \frac{P}{V}) = \frac{5}{3} P.$$

numerical solution: $B_{Cu} = 6.383 \times 10^{10} \text{ J/m}^3$.

3 Problem 5.17

Suppose we use delta-function *spikes*, instead of *wells* (so that the electrons are *repelled*, instead of attracted, by nuclei). Draw the analog to Figures 5.6 and 5.7 (using the same values of the parameters-except for their signs). How many allowed energies are there in each band? What is the energy at the top of the jth band?

3.1 Solution

Using delta-function *spikes*, the potential will be:

$$V(x) = \alpha \sum_{j=0}^{N-1} \delta(x - ja) \tag{10}$$

From the Schrödinger equation and boundary conditions we'll have:

$$f(z) = \cos(z) + \beta \frac{\sin(z)}{z}$$
(11)

For $\beta = 1$, the path will have the shape as shown. There are no negative energies levels, and there are N possibilities of energy in each band, and as z goes to infinity $f(z) = \cos(z), \cos(z) = 1, z = n\pi$. Since $z = ka, k = n\pi/a$, then $n\pi/a = \sqrt{2mE}/\hbar$. In the end the energy at the top of *j*th band will be:

$$E_j = \frac{\hbar^2 \pi^2 j^2}{2ma^2}$$
(12)

> $plot({cos(z)+sin(z)/z,-1,1},z=0...5*Pi);$

References

[1] D. J. Griffiths, Introduction to Quantum Mechanics, 1995