Revealing invisible spatial structure of Quantum Squeezed Vacuum.

Eugeniy E. Mikhailov, Charris Gabaldon, Irina Novikova¹ Pratik J. Barge, Hwang Lee, Lior Cohen²

People

Charris Gabaldon

Savannah Cuozzo

Nikunjkumar Prajapati

Irina Novikova

Ziqi Niu

Lior Cohen

Pratik Barge

Hwang Lee

Narayan Bhusal

Jon Dowling (1955-2020)

SPIE 2025/01/29

From bright to low light imaging

Eugeniy E. Mikhailov (W&M)

Imaging Quantum-Noise and with it

From bright to low light imaging

Eugeniy E. Mikhailov (W&M)

Imaging Quantum-Noise and with it

Let's look at quantum picture

Detector dark noise

Detector dark noise

Imaging quantum noise

Imaging quantum noise with binning

$$V = 1 + (\delta X_{sq/asq}^2 - 1) |\mathcal{O}|^2 T$$

Shadow imaging

$$egin{aligned} V_{pr} &= 1 + (\delta X_{ref}^2 - 1) |\mathcal{O}|^2 T \ T &= rac{V_{pr} - 1}{V_{ref} - 1} \end{aligned}$$

Similarity Parameter

Transmission Map Cross-section

R = 1

R = 5

R = 10

100

100

100

100

"Low-Light Shadow Imaging Using Quadrature-Noise Detection with a Camera", Advanced Quantum Technologies, 2100147, (2022).

Imaging with thermal light

"Weak Thermal State Quadrature-Noise Shadow Imaging", Optics Express, Issue 16, 30, 29401–29408, (2022).

Structural light imaging: single pixel camera

Single-pixel imaging 12 years on: a review

GRAHAM M. GIBSON,^{1,2} ^(D) STEVEN D. JOHNSON,^{1,3} ^(D) AND MILES J. PADGETT^{1,4} ^(D)

¹School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

²graham.gibson@glasgow.ac.uk

³ steven.johnson@glasgow.ac.uk

⁴miles.padgett@glasgow.ac.uk

https://www.gla.ac.uk/schools/physics/ourresearch/groups/optics/

$$Ob(x,y) = rac{1}{M}S_mP_m(x,y)$$

Structural light classical homodyning

"Wave-Front Reconstruction via Single-Pixel Homodyne Imaging", Optics Express, Issue 21, 30, 37938–37945, (2022).

Eugeniy E. Mikhailov (W&M)

Structural light imaging with quantum noise

Eugeniv E. Mikhailov (W&M)

SPIE 2025/01/29

π

H

 2π

Structural light imaging with quantum noise

Structural light using different quadratures

"Quantum fluctuations spatial mode profiler", AVS Quantum Science, 5, 025005, (2023).

Classical modes (Electric field distribution)

$CL=C + L = \cap T + \cup L$

Quadratures probability

+ ≠ - + | = ●

Gaussian state, joint probability density and covariance matrix

Gaussian states mixture

$$W(q_1, p_1, q_2, p_2, \cdots, q_n, p_n) = \frac{1}{(2\pi)^n} \frac{1}{\sqrt{\Sigma}} e^{-\frac{1}{2}((q_1, p_1, q_2, p_2, \cdots, q_n, p_n)\Sigma^{-1}(q_1, p_1, q_2, p_2, \cdots, q_n, p_n)^T)}$$

$$\Sigma_i = egin{pmatrix} \sigma^2_{m{q}_i} & C_i \ C_i & \sigma^2_{m{p}_i} \end{pmatrix}, C_i = \langle m{q}_i m{p}_i
angle$$

Eugeniy E. Mikhailov (W&M)

De-composition of covariance matrix to a basic states

Single mode in pixel space

Shape U(x, y)

Probability W(x, p)

Covariance matrix Σ

Gaussian states mixture

Truncated covariance matrix $\boldsymbol{\Sigma}$

How to measure covariance matrix

	x1	P1	x2	P2
x1	v(x1)	2Cov(x1,p1)	2Cov(x1,x2)	2Cov(x1,p2)
		$= v(x_1+p_1)$	$= v(x_1+x_2)$	$= v(x_1+p_2)$
		- v(x1) - v(p1)	$-v(x_1) - v(x_2)$	- v(x ₁) - v(p ₂)
P1	2Cov(p1,x1)		2Cov(p1,x2)	2Cov(p1,p2)
	$= v(p_1 + x_1)$	v(p1)	$= v(p_1 + x_2)$	$= v(p_1+p_2)$
	- v(p1) - v(x1)		- v(p ₁) - v(x ₂)	- v(p ₁) - v(p ₂)
x2	2Cov(x2,x1)	2Cov(x2,p1)		2Cov(x2,p2)
	$= v(x_2 + x_1)$	$= v(x_2+p_1)$	v(x ₂)	$= v(x_2+p_2)$
	$-v(x_2) - v(x_1)$	- v(x ₂) - v(p ₁)		- v(x ₂) - v(p ₂)
p2	2Cov(p2,x1)	2Cov(p2,p1)	2Cov(p2,x2)	
	$= v(p_2 + x_1)$	$= v(p_2+p_1)$	$= v(p_2 + x_2)$	v(p ₂)
	$-v(p_2) - v(x_1)$	- v(p ₂) - v(p ₁)	$-v(p_2) - v(x_2)$	

Required measurements: $(2N_p)^2/2$

Real data

