Atomic-optical compass with pT precision

Eugeniy E. Mikhailov, Mario Gonzalez Maldonado, Irina Novikova,¹ John Kitching, Yang Li, Isaac Fan, ² Jamie McKelvy, Andrey Matsko,³

Atomic-optical compass with pT precision

let Propulsion Laborator

Magnetic fields and magnetometers capabilities

Magnetic field

- Human brain:
 0.1 1 pT
- Human heart: 100 pT

Magnetometers

- SQUID: 1 fT
- SERF: 1 fT

Goal

We are looking for compact (less 1 cm³) **vector** magnetometer with pT precision capable to work at Earth magnetic field (50 μ T)

Electromagnetically Induced Transparency (EIT)

Simple EIT magnetometer

Conceptual design

EIT signals vs two-photon detuning. B= 50μ T, $f_{center} = 6'834'687.6$ kHz

 $\Delta m = -2,$ $f_{center} - 700$ kHz

 $\Delta m = 0$, fcenter

 $\Delta m = 2,$ $f_{center} + 700$ kHz

6 300 7 300 7 3000 7 3000 7 3000 7 3000 7 3000 7 3000 7 3000 7 3000 7

Eugeniy E. Mikhailov (W&M)

Signal to noise optimization

Optimization for different cells

10 Torr Ne

15 Torr Ne

Shorter cell with less buffer is better

V. I. Yudin *et al.* Phys. Rev. A 82, 033807 Kevin Cox *et al.* Phys. Rev. A 83, 015801

Linear polarization: angular dependence on θ and ϕ

Eugeniy E. Mikhailov (W&M)

Atomic-optical compass with pT precision

LPHYS 2022/07/19 13/17

ϕ angle tracking sensitivity

Eugeniy E. Mikhailov (W&M)

Principal component analysis: get components

Eugeniy E. Mikhailov (W&M)

Principal component analysis: use components space

Compass summary

- pT sensitivity
- measures B-field vector
- operates at the Earth magnetic field

Supported by DARPA under the US Army Research Office award W911NF-21-2-0094.