Tuning laser frequency response from low to high with dispersion.

Eugeniy E. Mikhailov, Savannah Cuozzo¹ and David D. Smith²

PQE, January 8th 2020

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-38-0) Communication PQE 2020 1/41

Potential applications

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 3 / 41

Dispersive cavity response

$$
\Delta f = f_0 \frac{\Delta L}{L}
$$

 \leftarrow \Box \leftarrow \Box \rightarrow \rightarrow

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 5 / 41

 \equiv

 $\left\langle \cdot \right\rangle$ ∍

Dispersive cavity response

$$
\Delta f = f_0 \frac{\Delta L}{L} \frac{1}{n_g} = \Delta f_{empty} \frac{1}{n_g}
$$

Group index

$$
n_g(f) = n + f_0 \frac{\partial n}{\partial f}
$$

 $v_q = c/n_q$

Cavity response enhanced if $n_q < 1$ i.e. under the fast light condition

Shahriar et al., PRA **75**, 053807 (2007)

 $2Q$

Two level system - fast light

Passive fast light cavity

- \triangleright First, largest, and most direct observation of enhanced scale-factor sensitivity ($S = 363$).
- \triangleright Tuning of S by temperature (slow) and by optical pumping (fast).

LASER

 ISO

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 8 / 41

Rb87

Oven P7T

FP Cavity

Ref

- No external lasers which require additional stabilization
- **o** self-contained thus small
- self-referenced
- allow to measure frequency shift directly

 \equiv

 OQ

イロト イ部 トイミト イモト

N-bar with four-wave mixing - fast and with gain

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 12 / 41

4 0 8 1

 $\mathcal{A} \cap \mathbb{R}^n \times \mathcal{A} \neq \mathcal{B}$

 $2Q$

E

 $\left\langle \cdot \right\rangle$

Setup and measured pulling factor

D. T. Kutzke, Optics Letters, Issue 14, **42**, 284[6,](#page-8-0) ([2](#page-10-0)[0](#page-8-0)[17](#page-9-0)[\).](#page-10-0)

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) Figure 15/41

Cavity response in fast, slow, and super slow regimes

Lasing equation

 \leftarrow \Box \rightarrow \equiv \rightarrow

 \leftarrow \Box \rightarrow

$$
n(\omega)L = m\lambda = mc\frac{2\pi}{\omega}
$$

 OQ

E

 $\left\langle \cdot \right\rangle$

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 17 / 41

Confidence in "high" and "low" pulling factors

Low $PF = 0.112$ with 90% bounds (0.096, 0.125)

High PF= 120×10^6 with 90% bounds $(52\times10^6, 158\times10^6)$

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 18 / 41

Pulling factor zoo

Power 98 mW

Savannah L. Cuozzo, Eugeniy E. Mikhailov, Phys. Rev. A, 100, 023846, (2019).

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) Figure 1996 2020 21/41

Pulling factor vs detuning dependence

- Region 1: Pulling factor ≤ 1 (no discontinuities), high laser output
- Region 2: Large pulling $\gg 1$
- Region 3 (middle): vibration free regime

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 22 / 41

 \leftarrow \Box \rightarrow

Beatnotes width comparison

C. Henry, IEEE Journal of Quantum Electronic[s](#page-17-0) [18](#page-19-0)[,](#page-17-0) [25](#page-18-0)[9](#page-19-0)[\(1](#page-18-0)[9](#page-19-0)[8](#page-17-0)[2\)](#page-18-0)[.](#page-19-0)

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) The Control with 2020 24/41

Coupled cavities setup. No lasing yet.

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 25 / 41

 \equiv

Coupled cavities setup. No lasing yet.

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 25 / 41

Enhancement with passive coupled cavities

 Ω

A. \rightarrow \rightarrow

 \leftarrow \Box \rightarrow

- No external lasers which require additional stabilization
- **o** self-contained thus small
- self-referenced
- allow to measure frequency shift directly

Let's talk about cows

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 29 / 41

Let's talk about CHAOS

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 29 / 41

CHAOS in a laser with extra feedback

$0.511.522.533.544.5$ Frequency, GHz

"Chaotic He-Ne laser" by Tom A Kuusela ,European Journal of Physics, Volume 38, Number 5, 2017

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 30 / 41

Lesson learned: larger loss - less CHAOS

Lesson learned: larger loss - less CHAOS

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 32 / 41

 \leftarrow \Box \rightarrow

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 32 / 41

 \leftarrow \Box \rightarrow

 $2Q$

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 32 / 41

10%

 \leftarrow \Box \rightarrow

 $2Q$

Back to lasing analysis

$$
\rho_{123} = -r_1 + \frac{a_1 \rho_{23} (1 - r_1^2) e^{i\phi_1}}{1 - a_1 \rho_{23} r_1 e^{i\phi_1}}
$$

$$
r_2 + \frac{1 - r_2^2}{r_2 - r_3 e^{i\phi_2}} = (r_1 a_1) e^{i\phi_1}
$$

 \sim

Round trip phase shifts

$$
\phi_1=(\omega-\omega_1)t_2=\Delta t_1
$$

$$
\phi_2=(\omega-\omega_2)t_2=(\Delta-\delta)t_2
$$

Ratio of round trip times

$$
\alpha=t_1/t_2
$$

 \equiv \rightarrow

∍

 \leftarrow \Box \rightarrow

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 33 / 41

E

 $a_2r_3 = .4$

 0.8 $\phi_{1}(\phi_{2})$ 0.6 0.4 0.2 $\alpha\left(\varphi_{2}+\delta\;t_{2}\right)$ h/π $\mathbf 0$ -0.2 -0.4 -0.6 -0.8 -1 -1 -0.8 -0.6 -0.4 -0.2 $\mathbf{0}$ 0.2 0.4 0.6 0.8 1 ϕ_2/π

 ϕ_1 vs ϕ_2 : r2=0.9, r3=0.4, alpha=0.5

Pulling factor vs cavities detuning: r2=0.9, r3=0.4, alpha=0.5 0.2 central $\mathbf{0}$ -0.2 right 뚠 -0.4 -0.6 left -0.8 -1 0.2 -0.5 -0.4 -0.3 -0.2 -0.1 $\mathbf 0$ 0.1 0.3 0.4 0.5 Cavities detuning: &FSR2

Required gain vs cavities detuning: r2=0.9, r3=0.4, alpha=0.5

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 34 / 41

$a_2r_3=.5$

 0.8 $\phi_{1}(\phi_{2})$ $\overline{0}$ 0.6 0.4 -1 0.2 $\alpha\left(\varphi_{2}+\delta\;t_{2}\right)$ h/π $\frac{\mu}{\Delta}$ -2 $\mathbf 0$ -0.2 -3 -0.4 -0.6 -4 -0.8 -5 -0.5 -1 -1 -0.8 -0.6 -0.4 -0.2 $\mathbf{0}$ 0.2 0.4 0.6 0.8 1 -0.4 -0.3 ϕ_2/π Laser detuning vs cavities detuning: r2=0.9, r3=0.5, alpha=0.5 0.5 $1,4$ 0.4 1.35 0.3 central aser detuning: A/FSR₂ 1.3 Required gain: a₁ r₁ 0.2 1.25 0.1 1.2 $\mathbf 0$ right -0.1 1.15 -0.2 $1,1$ -0.3 left 1.05 -0.4

 ϕ_1 vs ϕ_2 : r2=0.9, r3=0.5, alpha=0.5

Pulling factor vs cavities detuning: r2=0.9, r3=0.5, alpha=0.5 × central right left -0.2 -0.1 $\,$ 0 $\,$ 0.1 0.2 0.3 0.4 0.5 Cavities detuning: &FSR2

Required gain vs cavities detuning: r2=0.9, r3=0.5, alpha=0.5

 -0.2

 -0.1

 0.1 0.2

 $\pmb{0}$

Cavities detuning: &/FSR₂

 0.4 0.5

 0.3

 -0.5

 -0.5

 -0.4 -0.3

 2990

 $a_2r_3 = .7$

 ϕ_1 vs ϕ_2 : r2=0.9, r3=0.7, alpha=0.5

Laser detuning vs cavities detuning: $r2=0.9$, $r3=0.7$, alpha=0.5

Bequired gain vs cavities detuning: $r2=0.9$, $r3=0.7$, alpha=0.5

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 36 / 41

 QQQ

$a_2r_3 = .88$

 ϕ_1 vs ϕ_2 : r2=0.9, r3=0.88, alpha=0.5

Laser detuning vs cavities detuning: r2=0.9, r3=0.88, alpha=0.5

Pulling factor vs cavities detuning: r2=0.9, r3=0.88, alpha=0.5 $\overline{6}$ central $\overline{4}$ \overline{c} right $\frac{1}{\Delta}$ $\overline{0}$ left -2 -4 -0.1 -0.5 -0.4 -0.3 -0.2 $\,$ 0 $\,$ 0.1 0.2 0.3 0.4 0.5 Cavities detuning: &FSR2

Required gain vs cavities detuning: r2=0.9, r3=0.88, alpha=0.5

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 37 / 41

What are we capable now?

Laser detuning vs cavities detuning: r2=0.9, r3=0.4, alpha=0.5

Required gain vs cavities detuning: r2=0.9, r3=0.4, alpha=0.5

Pulling factor vs cavities detuning: r2=0.9, r3=0.4, alpha=0.5

Eugeniy E. Mikhailov (W&M) [Laser control with dispersion](#page-0-0) PQE 2020 39 / 41

Summary

- Coupled cavities laser would be useful for enhancing optical gyroscopes, and thus for better navigation systems.
- We demonstrated laser response control assisted by the atomic dispersion and in the coupled cavities lasing regime.
- The experiment seems to be in the agreement with our model.

 \leftarrow \Box \rightarrow