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Potential applications
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Dispersive cavity response
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Cavity response enhanced if ng < 1 i.e. under the fast light condition

Shahriar et al., PRA 75, 053807 (2007)

Eugeniy E. Mikhailov (W&M) Laser control with dispersion PQE 2020 5 / 41



Dispersive cavity response

∆f = f0
∆L
L

1
ng

= ∆fempty
1
ng

Group index

ng(f ) = n + f0
∂n
∂f

vg = c/ng

Cavity response enhanced if ng < 1 i.e. under the fast light condition

Shahriar et al., PRA 75, 053807 (2007)

Eugeniy E. Mikhailov (W&M) Laser control with dispersion PQE 2020 5 / 41



Two level system - fast light
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Passive fast light cavity
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Active lasing vs passive cavity

No external lasers which require additional stabilization
self-contained thus small
self-referenced
allow to measure frequency shift directly
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EIT - slow light
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N-bar with four-wave mixing - fast and with gain
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Setup and measured pulling factor
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Gyro beatnote spectrum  vs. empty cavity offset
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D. T. Kutzke, Optics Letters, Issue 14, 42, 2846, (2017).
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Cavity response in fast, slow, and super slow regimes

Fast
dn/dω < 1

Slow
dn/dω > 1
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Beatnote map with “high” pulling factor
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Beatnote map with “high” pulling factor
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Confidence in “high” and “low” pulling factors

Low PF= 0.112
with 90% bounds
(0.096,0.125)

High PF= 120× 106

with 90% bounds
(52× 106,158× 106)
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Pulling factor zoo
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Savannah L. Cuozzo, Eugeniy E. Mikhailov,
Phys. Rev. A, 100, 023846, (2019).
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Pulling factor vs detuning dependence

Region 1: Pulling factor ≤ 1 (no discontinuities), high laser output
Region 2: Large pulling� 1
Region 3 (middle): vibration free regime
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Beatnotes width comparison
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Coupled cavities setup. No lasing yet.
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Enhancement with passive coupled cavities
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Active lasing vs passive cavity

No external lasers which require additional stabilization
self-contained thus small
self-referenced
allow to measure frequency shift directly
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Let’s talk about cows
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Let’s talk about CHAOS
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CHAOS in a laser with extra feedback
R1 R2 R3a1 a2

L1 L2

“Chaotic He-Ne laser” by Tom A Kuusela ,European Journal of
Physics, Volume 38, Number 5, 2017
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Lesson learned: larger loss - less CHAOS

R1 R2 R3a1 a2

L1 L2

survival a2 is
10%
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Laser shift vs empty cavity shift
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Laser shift vs empty cavity shift
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Laser shift vs empty cavity shift
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Back to lasing analysis
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a2r3 = .4
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a2r3 = .5
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a2r3 = .7
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a2r3 = .88
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What are we capable now?
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Summary

Coupled cavities laser would be useful for enhancing optical
gyroscopes, and thus for better navigation systems.
We demonstrated laser response control assisted by the atomic
dispersion and in the coupled cavities lasing regime.
The experiment seems to be in the agreement with our model.

→
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