LIGO and squeezed states of light

and Eugeniy E. Mikhailov

Fudan, March 29, 2019

2017/10/03 Nobel prize in Physics

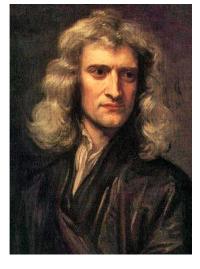
"for decisive contributions to the LIGO detector and the observation of gravitational waves"

Rainer Weiss

Kip S. Thorne

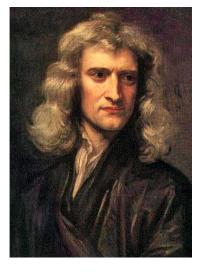
Barry C. Barish

LIGO Scientific Collaboration


About College of William and Mary

Chartered in 1693

Newton's laws 1686


$$F_g = G \frac{m_1 m_2}{r^2}$$

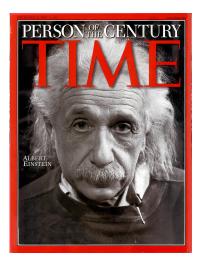
Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Newton's laws 1686

$$F_g = G \frac{m_1 m_2}{r^2}$$

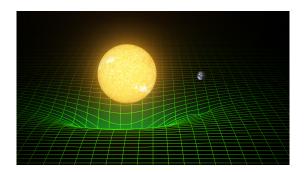

Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Time is not in the formula

Einstein's laws 1915



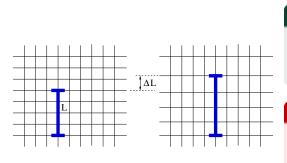
The General Theory of Relativity and theory of Gravity (1915)

- No absolute motion thus only relative motion
- Space and time are not separate thus four dimensional space-time
- Gravity is not a force acting at a distance thus warpage of space-time

General relativity

- A geometric theory connecting matter to spacetime
- Matter tells spacetime how to curve
- Spacetime tells matter how to move

important predictions


- \bullet Light path bends in vicinity of massive object \rightarrow confirmed in 1919
- Gravitational radiation (waves) → confirmed indirectly in 1974

Gravitational waves (GW)

- Predicted by the General Theory of Relativity
- Generated by aspherical mass distribution
- Induce space-time ripples which propagate with speed of light

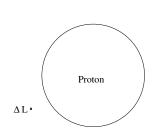
GW stretch and squeeze space-time thus move freely floating objects

Strain - strength of GW

$$h=\frac{\Delta L}{L} \tag{1}$$

expected strain

$$h \sim 10^{-21}$$

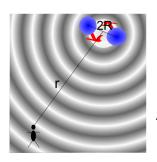

(2)

Gravitational waves (GW)

- Predicted by the General Theory of Relativity
- Generated by aspherical mass distribution
- Induce space-time ripples which propagate with speed of light

GW stretch and squeeze space-time thus move freely floating objects

Strain - strength of GW


$$h = \frac{\Delta L}{L} \tag{1}$$

expected strain

$$h \sim 10^{-21}$$

(2)

Typical strain

$$M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

$$h = 4 \frac{G}{c^2} \frac{M_c}{r} \left(\frac{G}{c^3} \pi f M_c \right)^{2/3}$$

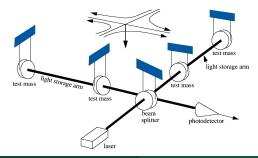
Assuming $m_1 = m_2 = m$ and recalling that

$$f^2 \sim Gm/R^3$$

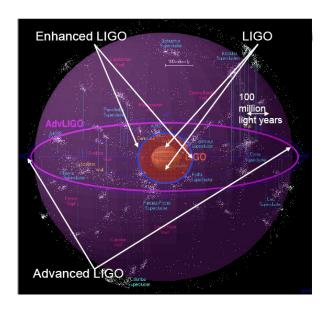
we obtain

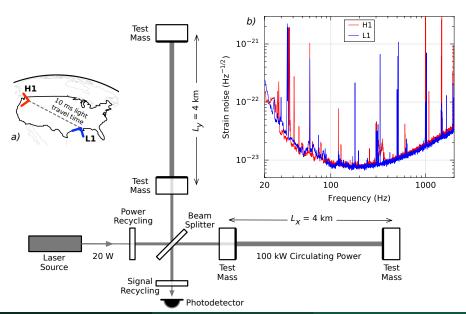
$$h \sim \frac{G^2 m^2}{rRc^4} \sim \frac{R_s^2}{Rr}$$

Where R_s is Schwarzschild radius of the mass m

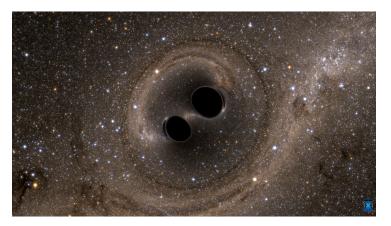

$$R_s = \frac{2Gm}{c^2}$$

Laser Interferometer Gravitational-wave Observatory



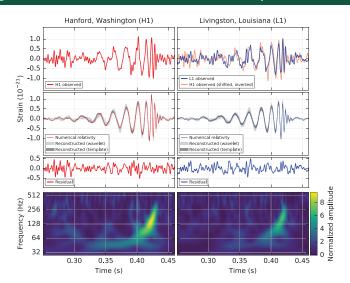

- *L* = 4 km
- $h \sim 10^{-23}$

From LIGO to advanced LIGO

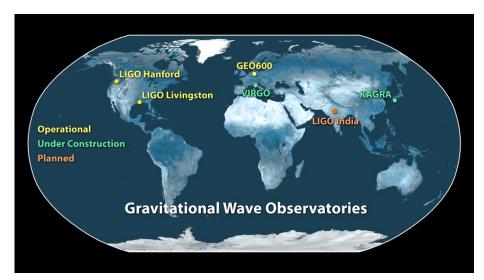


advanced LIGO detector summary

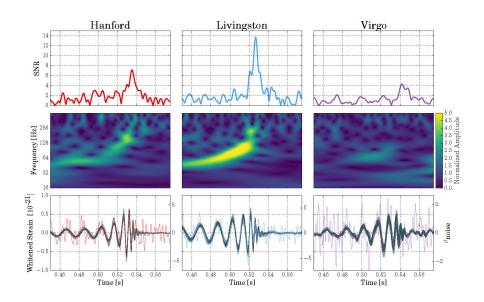
The sound of gravitational wave and simulated sky


- The Sound of Two Black Holes Colliding
- Two Black Holes Merge into One

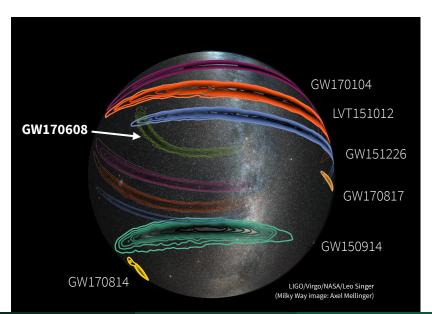
Two black holes with 29 and 36 solar masses merged about 1.3 billion years ago

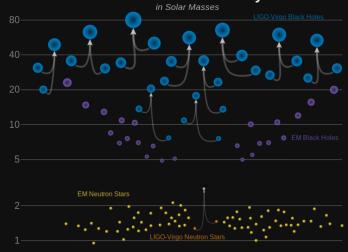

13 / 45

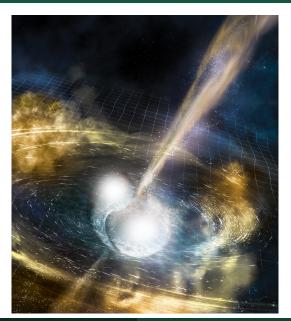
GW signal at 09:50:45 UTC on 14 September 2015



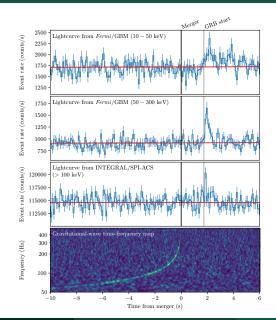
LIGO Scientific Collaboration, "Observation of Gravitational Waves from a Binary Black Hole Merger", Phys. Rev. Lett., 116, 061102, (2016).


World wide network of detectors

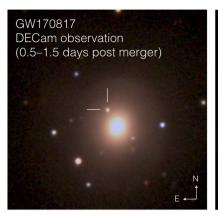

GW170814 triple detection


Sky maps

Masses in the Stellar Graveyard

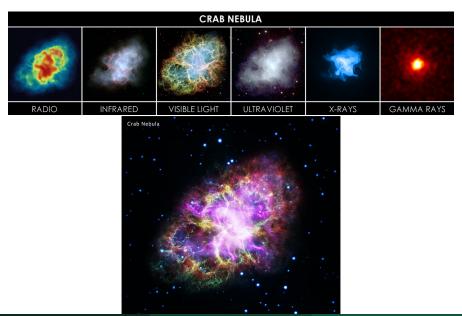


GW170817-kilonova artistic depiction



Simulation movie https://youtu.be/V6cm-0bwJ98

GW170817-kilonova: two neutron stars collision


GW170817-kilonova: two neutron stars collision

- GW170817: Coherent Spectrogram and Audio https://dcc.ligo.org/LIGO-G1701924
- GW170817: Fermi and LIGO signals https://wiki.ligo.org/pub/EPO/GW170817/GBM_GW170817_small.mov

Crab nebula, supernova 1054 remnants

Inside the tube

Seismic isolation

Photo from LIGO Magazine http://www.ligo.org/magazine/

Part of large system

Photo from LIGO Magazine http://www.ligo.org/magazine/

25 / 45

Work in chamber

Inside vacuum chamber

Photo from LIGO Magazine http://www.ligo.org/magazine/

Mode cleaner optics

Large optics suspension

Mirror

Photo from LIGO Magazine http://www.ligo.org/magazine/

Inner test mass

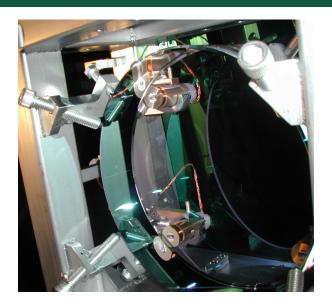


Photo from LIGO Magazine http://www.ligo.org/magazine/

31 / 45

Baffle

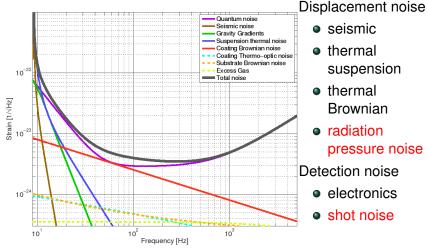


Photo from LIGO Magazine http://www.ligo.org/magazine/

We can detect stars collisions and ...

Advanced LIGO sensitivity goal and noise budget

"Advanced LIGO", Class. Quantum Grav., 32, 074001 (2015)

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N > 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N > 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Optics equivalent strict definition

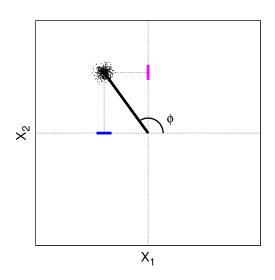
 $\Delta X_1 \Delta X_2 \geq 1/4$

Transition from classical to quantum field

Classical analog

- Field amplitude a
- Field real part $X_1 = (a^* + a)/2$
- Field imaginary part $X_2 = i(a^* a)/2$

$$E(\phi) = |a|e^{-i\phi} = X_1 + iX_2$$


 X_1

Quantum approach

- Field operator â
- Amplitude quadrature $\hat{X}_1 = (\hat{a}^{\dagger} + \hat{a})/2$
- Phase quadrature $\hat{X}_2 = i(\hat{a}^{\dagger} \hat{a})/2$

$$\hat{E}(\phi) = \hat{X}_1 + i\hat{X}_2$$

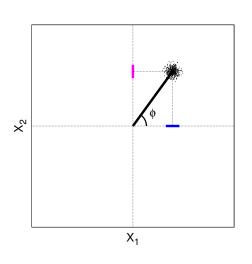
Quantum optics summary

Light consist of photons

•
$$\hat{N} = a^{\dagger}a$$

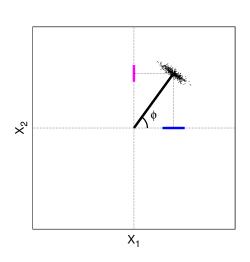
Commutator relationship

•
$$[a, a^{\dagger}] = 1$$


$$[X_1, X_2] = i/2$$

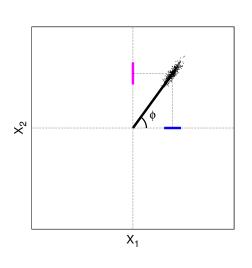
Detectors measure

- number of photons N̂
- Quadratures $\hat{X_1}$ and $\hat{X_2}$


Uncertainty relationship

$$\Delta X_1 \Delta X_2 \ge 1/4$$

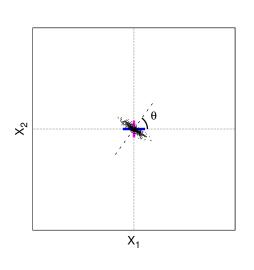
Unsqueezed coherent



Unsqueezed coherent

Amplitude squeezed

Unsqueezed coherent

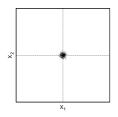


Amplitude squeezed

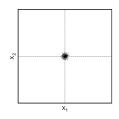
Phase squeezed

Unsqueezed coherent

Phase squeezed

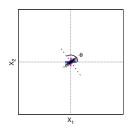

Amplitude squeezed

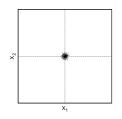
Vacuum squeezed



Take a vacuum state |0>

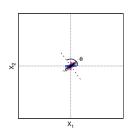
$$H=\frac{1}{2}$$


Take a vacuum state |0>

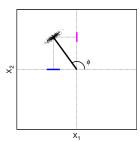

$$H=\frac{1}{2}$$

Apply squeezing operator $|\xi>=\hat{S}(\xi)|0>$

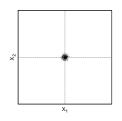
$$\hat{S}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$


Take a vacuum state |0>

$$H=\frac{1}{2}$$


Apply squeezing

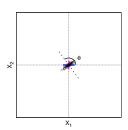
$$\hat{S}(\xi) = e^{\frac{1}{2}\xi^*a^2 - \frac{1}{2}\xi a^{\dagger 2}}$$


Apply displacement operator $|\xi\rangle = \hat{S}(\xi)|0\rangle$ operator $|\alpha, \xi\rangle = \hat{D}(\alpha)|s\rangle$

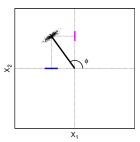
$$\hat{D}(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$$

$$<\alpha, \xi | X_1 | \alpha, \xi > = Re(\alpha),$$

 $<\alpha, \xi | X_2 | \alpha, \xi > = Im(\alpha)$


Take a vacuum state |0>

$$H=\frac{1}{2}$$


Apply squeezing

$$\hat{\mathcal{S}}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$

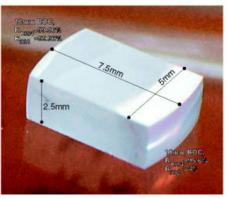
Apply displacement operator $|\xi\rangle = \hat{S}(\xi)|0\rangle$ operator $|\alpha, \xi\rangle = \hat{D}(\alpha)|s\rangle$

$$\hat{D}(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$$

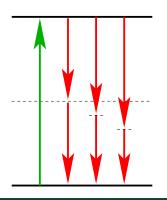
$$<\alpha, \xi | X_1 | \alpha, \xi > = Re(\alpha),$$

 $<\alpha, \xi | X_2 | \alpha, \xi > = Im(\alpha)$

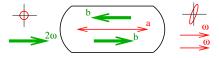
Notice $\Delta X_1 \Delta X_2 = \frac{1}{4}$


Tools for squeezing

Tools for squeezing


Tools for squeezing

Two photon squeezing picture

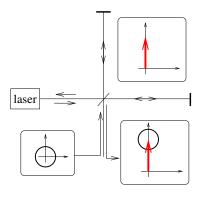


Squeezing operator

$$\hat{\mathcal{S}}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$

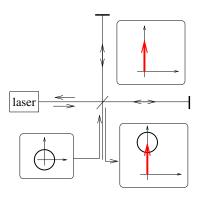
Parametric down-conversion in crystal

$$\hat{H} = i\hbar \chi^{(2)} (\mathbf{a}^2 b^{\dagger} - \mathbf{a}^{\dagger 2} b)$$

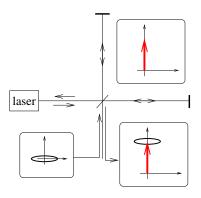

Squeezing

maximum squeezing value detected 15 dB at 1064 nm Henning Vahlbruch, Moritz Mehmet, Karsten Danzmann, and Roman Schnabel Phys. Rev. Lett 117, 110801 (2016)

Squeezing and interferometer

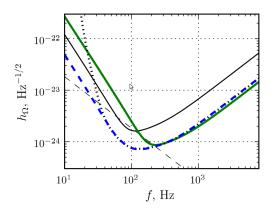

Squeezing and interferometer

Vacuum input



Squeezing and interferometer

Vacuum input



Squeezed input

Interferometer sensitivity improvement with squeezing

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010) Projected advanced LIGO sensitivity

Demonstrations of quantum enhancement of LIGO

Keisuke Goda, et al., Nature Physics, **4**, 472-476, (2008) Ligo Scientific Collaboration, Nature Photonics **7**, 613-619 (2013)

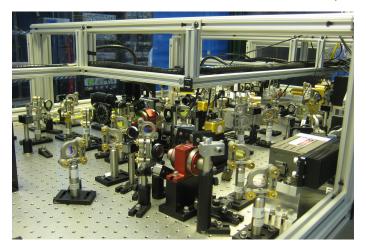
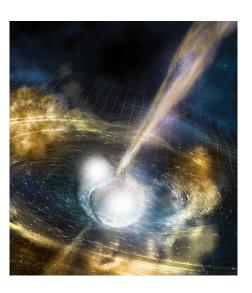



Photo of Squeezer, LIGO Magazine http://www.ligo.org/magazine/

Summary

- In 2015 we detected the first Gravitational Wave
- Now we are talking about GW astronomy