Vibration free laser via change of the cavity pulling sign.

Eugeniy E. Mikhailov, Savannah Cuozzo, Demetrious T. Kutzke, Owen Wolfe, Irina Novikova¹, Simon Rochester, Dmitry Budker²,

Photonics West, 01 February 2018

Eugeniy E. Mikhailov (W&M)

Vibration free laser

Sagnac effect and cavity response

$$\Delta p = \pm \Omega R t = \pm \frac{2A\Omega}{c}$$
$$\Delta f = f_0 \frac{\Delta p}{p}$$

Eugeniy E. Mikhailov (W&M)

Photonics West, 2018 2 / 22

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sagnac effect and cavity response

$$\Delta p = \pm \Omega Rt = \pm \frac{2A\Omega}{c}$$
$$\Delta f = f_0 \frac{\Delta p}{p} \frac{1}{n_g} = \Delta f_{empty} \frac{1}{n_g}$$
roup index
$$n_g(f) = n + f_0 \frac{\partial n}{\partial f}$$

$$v_g = c/n_g$$

Cavity response enhanced if $n_g < 1$ i.e. under the fast light condition Shahriar et al., PRA **75**, 053807 (2007)

э

イロト イロト イヨト イヨト

N-bar with four-wave mixing - fast and with gain

Eugeniy E. Mikhailov (W&M)

< 回 ト < 三 ト < 三

N-bar with Doppler averaging

Eugeniy E. Mikhailov (W&M)

Vibration free laser

Photonics West, 2018 6 / 22

The first gyro setup and its performance

 D_1 tuned around $F_g = 1 \rightarrow F_e = 1, 2$

The first gyro setup and its performance

Gyro lasing: theory vs. experiment

イロト イロト イヨト イ

Gyro pulling and amplitude vs. gyro cavity detuning

Eugeniy E. Mikhailov (W&M)

Vibration free laser

Photonics West, 2018 10 / 22

Pulling factor with increased cavity finesse (20 \rightarrow 70)

Eugeniy E. Mikhailov (W&M)

Vibration free laser

Photonics West, 2018 11 / 22

Dependence on total pumps power

Demetrious T. Kutzke, Owen Wolfe, Simon M. Rochester, Dmitry Budker, Irina Novikova, Eugeniy E. Mikhailov, "Tailorable dispersion in a four-wave mixing laser", Optics Letters, Issue 14, 42, 2846, (2017).

High power regime: dependence on D₂ detuning

Pumps power \approx 6 mW

Pumps power \approx 180 mW

Gyroscope laser multi-mode structure

Gyro beatnote spectrum vs. empty cavity offset

Eugeniy E. Mikhailov (W&M)

I do not believe in horoscopes

Eugeniy E. Mikhailov (W&M)

Eugeniy E. Mikhailov (W&M)

э

(4) E > (4) E

I > <
I >
I

Laser independence on cavity detuning

Pumps power \approx 60 mW, cell temperature 100 o C

Eugeniy E. Mikhailov (W&M)

Photonics West, 2018 18 / 22

Laser independence on cavity detuning

Pumps power \approx 60 mW, cell temperature 100 o C

Eugeniy E. Mikhailov (W&M)

Photonics West, 2018 18 / 22

Comparison: no pulling and high pulling regimes

Pumps power 38 mW, \approx 360 mW, cell temperature 102 oC Most importantly different D1 detunings.

Beatnotes width comparison

Do we have lasing linewidth narrowing by $1/n_a^2$?

Eugeniy E. Mikhailov (W&M)

People

Irina Novikova, Owen Wolfe, Demetrious Kutzke, Savannah Cuozzo (WM), Dmitry Budker, Simon Rochester (Rochester Scientific).

Eugeniy E. Mikhailov (W&M)

Vibration free laser

Summary

- Improved puling factor: 0.005 \rightarrow 0.3 with increased finesse (20 \rightarrow 70)
- Increased pump lasers power (6 mW \rightarrow 200 mW) pushed the pulling factor to 1
- Setup has widely tunable response influenced by
 - pump lasers power and detuning
 - density of ⁸⁷Rb atoms
 - cavity finesse
- Under certain condition the laser output does not depend on cavity length

We are grateful for financial support to

