Squeezing vacuum with Rb atoms: quantum enhanced magnetometry and transient effects.

Eugeniy E. Mikhailov

WILLIAM \mathcal{C} MARY

CHARTERED 1693

Helmholtz-Institut Mainz, November 2, 2018

Eugeniy E. Mikhailov (W&M) [Squeezing and magnetometry](#page-48-0) HIM, November 2, 2018 1 / 33

About College of William and Mary

Electromagnetically Induced Transparency (EIT)

Electromagnetically Induced Transparency (EIT)

Electromagnetically Induced Transparency (EIT)

Coherent Population Trapping

- Dark $|D\rangle = \Omega_d |b\rangle \Omega_p |c\rangle$ and Bright $|B\rangle = \Omega_d |c\rangle + \Omega_p |b\rangle$ states
- resonance width (\sim 10kHz) much smaller then natural line width \bullet

EIT observation

Simple EIT magnetometer

Phase noise to amplitude noise conversion

Phase noise to amplitude noise conversion

Transit Ramsey Electromagnetically Induced Transparency (TREIT)

Ravn M. Jenkins, Eugeniy E. Mikhailov, and Irina Novikova, "Transit Ramsey EIT resonances in a Rb vacuum cell", arXiv:1807.10370, (2018).

Transit Ramsey Electromagnetically Induced Transparency (TREIT)

Ravn M. Jenkins, Eugeniy E. Mikhailov, and Irina Novikova, "Transit Ramsey EIT resonances in a Rb vacuum cell", arXiv:1807.10370, (2018).

TREIT explanation

$$
\begin{array}{rcl} |D_1\rangle(t=\tau)&=&\big(\Omega_1|b\rangle-e^{i\delta\cdot\tau}\Omega_0|c\rangle\big)/\Omega,\\ |D_2\rangle(t=\tau)&=&\big(\Omega_1|b\rangle-e^{i\phi_{\rm HF}+i\delta\cdot\tau}\Omega_0|c\rangle\big)/\Omega,\\ & &\Delta I(\delta)&\propto\frac{|\Omega|^2}{\delta^2+\Gamma^2}e^{-2\Gamma t_{\rm tr}}\sin\phi_{\rm HF}\times\sin\big[\delta(2t_{\rm tr}+\tau)+\tan^{-1}(\delta/\Gamma)\big],\\ & &\text{Eugezing and magnetometry}\\ & &\text{HIM, November 2, 2018}\end{array}
$$

Signal to noise analysis EIT vs TREIT

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Shot noise limit of the magnetometer

Transition from classical to quantum field

Classical analog

- Field amplitude *a*
- Field real part
	- $X_1 = (a^* + a)/2$
- Field imaginary part $X_2 = i(a^* - a)/2$

Quantum approach

- Field operator *a*ˆ
- Amplitude quadrature $\hat{X_1} = (\hat{a}^\dagger + \hat{a})/2$
- Phase quadrature $\hat{\mathcal{X}}_2 = i(\hat{a}^\dagger - \hat{a})/2$

Light consist of photons $\hat{N} = a^{\dagger}a$ Commutator relationship $[a, a^{\dagger}] = 1$ \bullet $[X_1, X_2] = i/2$ Detectors measure number of photons *N*ˆ Quadratures $\hat{\mathsf{X}_1}$ and $\hat{\mathsf{X}_2}$ Uncertainty relationship ∆*X*1∆*X*² ≥ 1/4

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

∆φ∆*N* ≥ 1

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

∆φ∆*N* ≥ 1

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Optics equivalent strict definition

 $\Delta X_1 \Delta X_2$ ≥ 1/4

Self-rotation of elliptical polarization in atomic medium

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, PRA 66, 043815 (2002): theoretical prediction of 4–6 dB noise suppression

$$
a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in})
$$

Self-rotation of elliptical polarization in atomic medium

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, PRA 66, 043815 (2002): theoretical prediction of 4–6 dB noise suppression

$$
a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in})
$$

Eugeniy E. Mikhailov (W&M) [Squeezing and magnetometry](#page-0-0) HIM, November 2, 2018 20/33

Noise contrast vs detuning in hot ⁸⁷Rb vacuum cell

Squeezing region

Squeezing **Anti-squeezing**

Observation of reduction of quantum noise below the shot noise limit is corrupted by the excess noise due to atomic interaction with atoms.

Maximally squeezed spectrum with ⁸⁷Rb

W&M team. ⁸⁷Rb $F_q = 2 \rightarrow F_e = 2$, laser power 7 mW, T=65 \degree C

Lezama et.al report 3 dB squeezing in similar setup Phys. Rev. A 84, 033851 (2011)

Squeezed enhanced magnetometer setup

Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Magnetometer noise floor improvements

Magnetometer noise spectra

Noise suppression and response vs atomic density

ן - 2 Noise suppression (dB) Noise suppression (dB) 0| −2 5 kHz 100 kHz 500 kHz −4 1 MHz -6 ¹⁰ 10¹¹ 10¹² Atomic density (atoms/cm³) 0.25 1 $\overline{\xi}$ 0.2 \cdot Normalized transmission Slope of rotation signal (V/ 0.95 0.15 0.9 0.1 0.85 0.05 0.8 õ 10^{10} 10¹⁰ 10¹² 10^{12} Atomic density (atoms/cm³)

Noise suppression

Response

Magnetometer with squeezing enhancement

T. Horrom, et al. **PRA**, 86, 023803, (2012).

Self-squeezed magnetometry

Irina Novikova, Eugeniy E. Mikhailov, Yanhong Xiao, "Excess optical quantum noise in atomic sensors", Phys. Rev. A, **91**, 051804(R), (2015). Eugeniy E. Mikhailov (W&M) [Squeezing and magnetometry](#page-0-0) HIM, November 2, 2018 29 / 33

20 pT $/\sqrt{\text{Hz}}$ self-squeezed magnetometry with 4WM

N. Otterstrom, R. C. Pooser, and B. J. Lawrie, "Nonlinear optical magnetometry with accessible in situ optical squeezing", Optics Letters, **39**, Issue 22, pp. 6533-6536 (2014)

Quantum imaging effort: from owl to sloth

Eugeniy E. Mikhailov (W&M) [Squeezing and magnetometry](#page-0-0) HIM, November 2, 2018 31 / 33

People

WM: Irina Novikova, Ravn M. Jenkins, Savannah Cuozzo, Austin Kalasky

Former members: George Denny, Melissa A. Guidry, Mi Zhang, Travis Horrom, Gleb Romanov, Demetrious Kutzke

- • fully atomic squeezed enhanced magnetometer with sensitivity as low as $1 \frac{\text{pT}}{\text{pT}}$
- superluminal squeezing propagation with $v_g \approx -7'$ 000 m/s $\approx -c/43'$ 000 or time advancement of 11 μ S
- We were able to improve squeezing by multipass configuration
- Our squeezed state is a set of competing multimodes
- We are working on quantum modes extraction and imaging

Financial support by AFOSR, ARO, and NSF.