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Electromagnetically Induced Transparency (EIT)
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Coherent Population Trapping
Dark |D〉 = Ωd |b〉 − Ωp|c〉 and Bright |B〉 = Ωd |c〉+ Ωp|b〉 states
resonance width (∼ 10kHz) much smaller then natural line width
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EIT observation
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Simple EIT magnetometer

EIT with circularly polarized light

m=−2 m=−1 m=0 m=1 m=2

F=2

F=2

F=1
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Phase noise to amplitude noise conversion

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

-1 -0.5  0  0.5  1  1.5  2

T
ra

ns
m

is
si

on
 (

A
rb

.U
ni

ts
)

Frequency  (GHz)
Eugeniy E. Mikhailov (W&M) Squeezing and magnetometry HIM, November 2, 2018 6 / 33



Phase noise to amplitude noise conversion

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

-1 -0.5  0  0.5  1  1.5  2

T
ra

ns
m

is
si

on
 (

A
rb

.U
ni

ts
)

Frequency  (GHz)
Eugeniy E. Mikhailov (W&M) Squeezing and magnetometry HIM, November 2, 2018 6 / 33



Transit Ramsey Electromagnetically Induced
Transparency (TREIT)

Ravn M. Jenkins, Eugeniy E. Mikhailov, and Irina Novikova,
“Transit Ramsey EIT resonances in a Rb vacuum cell”,
arXiv:1807.10370, (2018).
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TREIT explanation

|D1〉(t = τ) = (Ω1|b〉 − eiδ·τΩ0|c〉)/Ω,

|D2〉(t = τ) = (Ω1|b〉 − eiφHF+iδ·τΩ0|c〉)/Ω,

∆I(δ) ∝ |Ω|2
δ2 + Γ2 e−2Γttr sinφHF × sin [δ(2ttr + τ) + tan−1(δ/Γ)],
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Signal to noise analysis EIT vs TREIT

Ravn M. Jenkins, Eugeniy E. Mikhailov, and Irina Novikova, “Transit Ramsey
EIT resonances in a Rb vacuum cell”, arXiv:1807.10370, (2018).
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Optical magnetometer based on Faraday effect
87Rb D1 line
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Optical magnetometer and non linear Faraday effect

Naive model of rotation
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Magnetometer response vs atomic density
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Shot noise limit of the magnetometer
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Transition from classical to quantum field

Classical analog
Field amplitude a
Field real part
X1 = (a∗ + a)/2
Field imaginary part
X2 = i(a∗ − a)/2

E(φ) = |a|e−iφ = X1 + iX2

X
2

X
1

φ

Quantum approach
Field operator â
Amplitude quadrature
X̂1 = (â† + â)/2
Phase quadrature
X̂2 = i(â† − â)/2

Ê(φ) = X̂1 + i X̂2

X
2

X
1

φ
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Quantum optics summary
X

2

X
1

φ

Light consist of photons
N̂ = a†a

Commutator relationship
[a,a†] = 1
[X1,X2] = i/2

Detectors measure
number of photons N̂
Quadratures X̂1 and X̂2

Uncertainty relationship
∆X1∆X2 ≥ 1/4
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Heisenberg uncertainty principle and its optics
equivalent

Heisenberg uncertainty principle
∆p∆x ≥ ~/2
The more precisely the POSITION is determined,
the less precisely the MOMENTUM is known,
and vice versa

Optics equivalent
∆φ∆N ≥ 1
The more precisely the PHASE is determined,
the less precisely the AMPLITUDE is known, and
vice versa

Optics equivalent strict definition
∆X1∆X2 ≥ 1/4
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Squeezed quantum states zoo
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Squeezed quantum states zoo
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Self-rotation of elliptical polarization in atomic medium

SR

∆

Ω+ Ω-

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and
S. M. Rochester, PRA 66, 043815 (2002):
theoretical prediction of 4–6 dB noise suppression

aout = ain +
igL
2

(a†in − ain)

Eugeniy E. Mikhailov (W&M) Squeezing and magnetometry HIM, November 2, 2018 18 / 33



Self-rotation of elliptical polarization in atomic medium

SR

|+> |−>

|c>

|d>

Ω Ω

αα ω+ωω−ω

ωω0

0 0

0

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and
S. M. Rochester, PRA 66, 043815 (2002):
theoretical prediction of 4–6 dB noise suppression

aout = ain +
igL
2

(a†in − ain)

Eugeniy E. Mikhailov (W&M) Squeezing and magnetometry HIM, November 2, 2018 18 / 33



Setup
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Setup

PBSPBS
RB87

LOV.Sq
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Noise contrast vs detuning in hot 87Rb vacuum cell

Fg = 2→ Fe = 1,2
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Squeezing region

Squeezing Anti-squeezing

Observation of reduction of quantum noise below the shot noise limit is
corrupted by the excess noise due to atomic interaction with atoms.
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Maximally squeezed spectrum with 87Rb

W&M team. 87Rb Fg = 2→ Fe = 2, laser power 7 mW, T=65◦ C
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Lezama et.al report 3 dB squeezing in similar setup
Phys. Rev. A 84, 033851 (2011)
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Squeezed enhanced magnetometer setup

Rb Cell Rb Cell
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Note: Squeezed enhanced magnetometer was first demonstrated by
Wolfgramm et. al Phys. Rev. Lett, 105, 053601, 2010.
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Magnetometer noise floor improvements
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Magnetometer noise spectra
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Noise suppression and response vs atomic density

Noise suppression
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Magnetometer with squeezing enhancement

Rb Cell Rb Cell
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T. Horrom, et al. PRA, 86, 023803, (2012).
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Self-squeezed magnetometry

Rb Cell Rb Cell
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Irina Novikova, Eugeniy E. Mikhailov, Yanhong Xiao, “Excess optical
quantum noise in atomic sensors”, Phys. Rev. A, 91, 051804(R),
(2015).
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20 pT/
√

Hz self-squeezed magnetometry with 4WM

N. Otterstrom, R. C. Pooser, and B. J. Lawrie, “Nonlinear optical
magnetometry with accessible in situ optical squeezing”, Optics
Letters, 39, Issue 22, pp. 6533-6536 (2014)
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Quantum imaging effort: from owl to sloth
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People

WM: Irina Novikova, Ravn M. Jenkins, Savannah Cuozzo, Austin
Kalasky
Former members: George Denny, Melissa A. Guidry, Mi Zhang, Travis
Horrom, Gleb Romanov, Demetrious Kutzke
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Summary

fully atomic squeezed enhanced magnetometer
with sensitivity as low as 1 pT/

√
Hz

superluminal squeezing propagation
with vg ≈ −7′000 m/s ≈ −c/43′000 or time advancement of 11 µS
We were able to improve squeezing by multipass configuration
Our squeezed state is a set of competing multimodes
We are working on quantum modes extraction and imaging

Financial support by AFOSR, ARO, and NSF.
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