Squeezing vacuum with Rb atoms: quantum enhanced magnetometry and competition of spatial modes.

Eugeniy E. Mikhailov

Erlangen, March 12, 2018

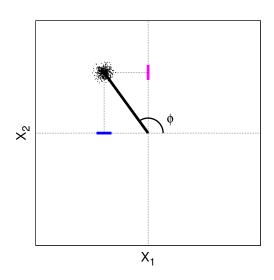
About College of William and Mary

Transition from classical to quantum field

Classical analog

- Field amplitude a
- Field real part $X_1 = (a^* + a)/2$
- Field imaginary part $X_2 = i(a^* a)/2$

$$E(\phi) = |a|e^{-i\phi} = X_1 + iX_2$$


 X_1

Quantum approach

- Field operator â
- Amplitude quadrature $\hat{X_1} = (\hat{a}^{\dagger} + \hat{a})/2$
- Phase quadrature $\hat{X}_2 = i(\hat{a}^{\dagger} \hat{a})/2$

$$\hat{E}(\phi) = \hat{X}_1 + i\hat{X}_2$$

Quantum optics summary

Light consist of photons

•
$$\hat{N} = a^{\dagger}a$$

Commutator relationship

•
$$[a, a^{\dagger}] = 1$$

$$[X_1, X_2] = i/2$$

Detectors measure

- number of photons \hat{N}
- Quadratures $\hat{X_1}$ and $\hat{X_2}$

Uncertainty relationship

$$\Delta X_1 \Delta X_2 \ge 1/4$$

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N > 1$

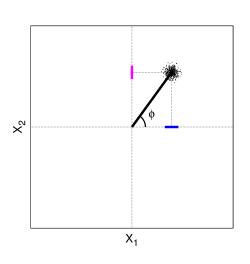
The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

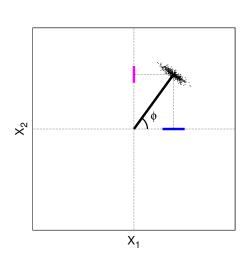
 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa


Optics equivalent

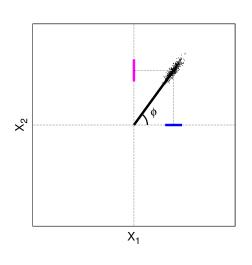
 $\Delta \phi \Delta N > 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

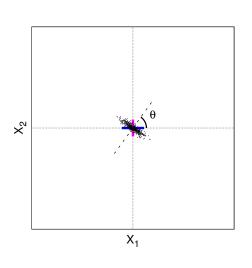

Optics equivalent strict definition

 $\Delta X_1 \Delta X_2 \ge 1/4$

Unsqueezed coherent


Unsqueezed coherent

Unsqueezed coherent

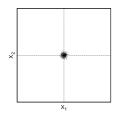


Phase squeezed

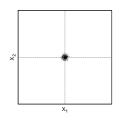
Amplitude squeezed

Unsqueezed coherent

Phase squeezed

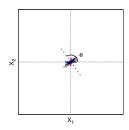

Amplitude squeezed

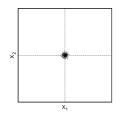
Vacuum squeezed



Take a vacuum state |0>

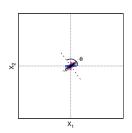
$$H=\frac{1}{2}$$


Take a vacuum state |0>

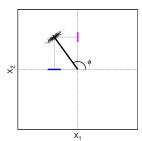

$$H=\frac{1}{2}$$

Apply squeezing operator $|\xi>=\hat{S}(\xi)|0>$

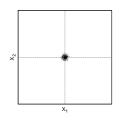
$$\hat{S}(\xi) = e^{\frac{1}{2}\xi^*a^2 - \frac{1}{2}\xi a^{\dagger 2}}$$


Take a vacuum state |0>

$$H=\frac{1}{2}$$


Apply squeezing operator $|\xi\rangle = \hat{S}(\xi)|0\rangle$ operator $|\alpha, \xi\rangle = \hat{D}(\alpha)|s\rangle$

$$\hat{S}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$

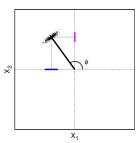

Apply displacement

$$\hat{D}(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$$

$$<\alpha, \xi | X_1 | \alpha, \xi > = Re(\alpha),$$

 $<\alpha, \xi | X_2 | \alpha, \xi > = Im(\alpha)$

Take a vacuum state |0>


$$H=\frac{1}{2}$$

Apply squeezing

 $\hat{S}(\xi) = e^{\frac{1}{2}\xi^*a^2 - \frac{1}{2}\xi a^{\dagger 2}}$

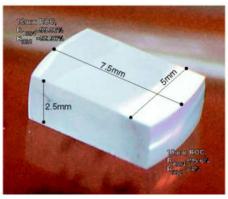
Apply displacement operator $|\xi>=\hat{S}(\xi)|0>$ operator $|\alpha,\xi>=\hat{D}(\alpha)|s>$

$$\hat{D}(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$$

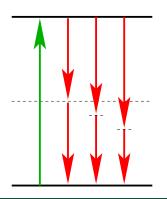
$$<\alpha, \xi | X_1 | \alpha, \xi > = Re(\alpha),$$

 $<\alpha, \xi | X_2 | \alpha, \xi > = Im(\alpha)$

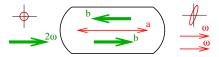
Notice $\Delta X_1 \Delta X_2 = \frac{1}{4}$


Tools for squeezing

Tools for squeezing


Tools for squeezing

Two photon squeezing picture

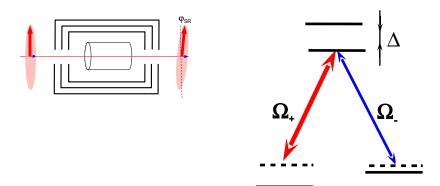


Squeezing operator

$$\hat{\mathcal{S}}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$

Parametric down-conversion in crystal

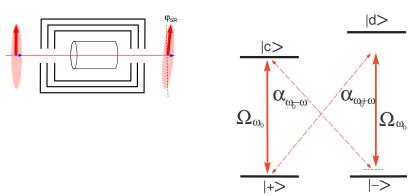
$$\hat{H} = i\hbar \chi^{(2)} (\mathbf{a}^2 b^{\dagger} - \mathbf{a}^{\dagger 2} b)$$


Squeezing

maximum squeezing value detected 15 dB at 1064 nm Henning Vahlbruch, Moritz Mehmet, Karsten Danzmann, and Roman Schnabel Phys. Rev. Lett 117, 110801 (2016)

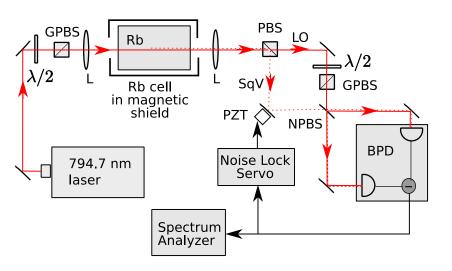
Possible squeezing applications

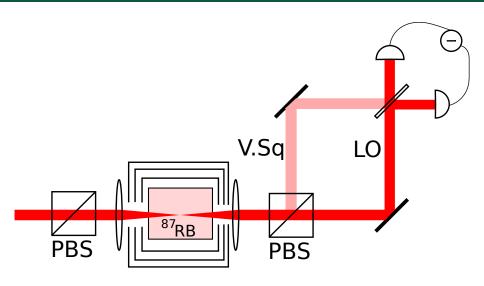
- shot noise limited optical sensors enhancements
- noiseless signal amplification
- photon pair generation, entanglement, true single photon sources
- interferometers sensitivity boost (for example gravitational wave antennas)
- light free measurements
- quantum memory probe and information carrier


Self-rotation of elliptical polarization in atomic medium

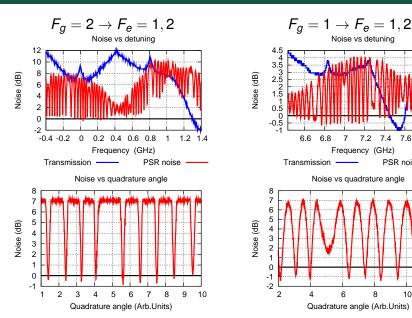
A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in})$$

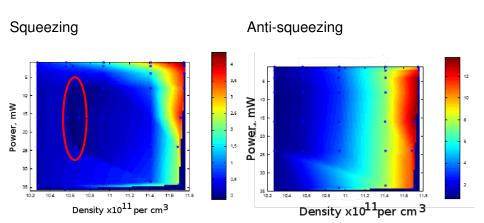

Self-rotation of elliptical polarization in atomic medium


A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in})$$

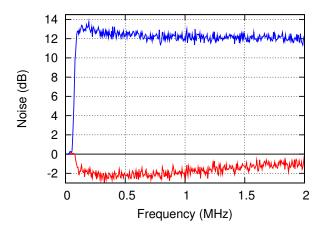

Setup

Setup

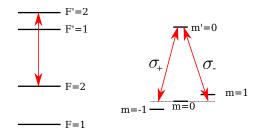

Noise contrast vs detuning in hot 87Rb vacuum cell

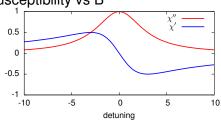
PSR noise

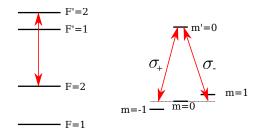
12

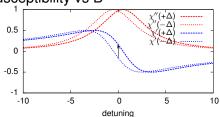

Squeezing region

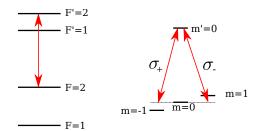
Observation of reduction of quantum noise below the shot noise limit is corrupted by the excess noise due to atomic interaction with atoms.

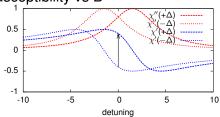

Maximally squeezed spectrum with ⁸⁷Rb

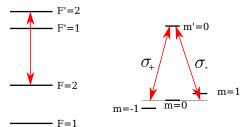

W&M team. ⁸⁷Rb $F_g = 2 \rightarrow F_e = 2$, laser power 7 mW, T=65° C


Lezama et.al report 3 dB squeezing in similar setup Phys. Rev. A 84, 033851 (2011)

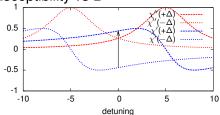

⁸⁷Rb D₁ line

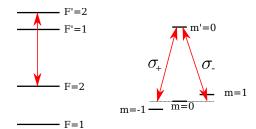


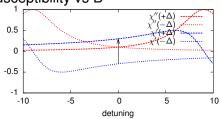

⁸⁷Rb D₁ line



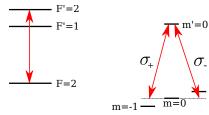
⁸⁷Rb D₁ line

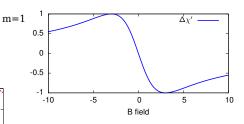



⁸⁷Rb D₁ line



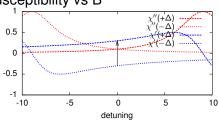
_ _


⁸⁷Rb D₁ line



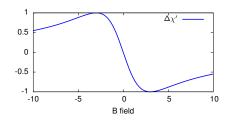
 σ_{-}

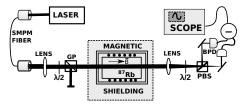
⁸⁷Rb D₁ line



Polarization rotation vs B

Susceptibility vs B

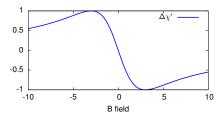

F=1

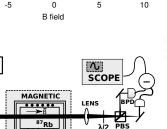


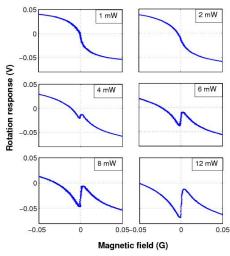
Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

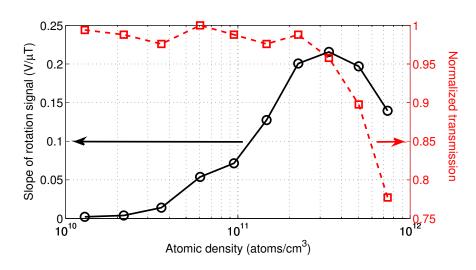




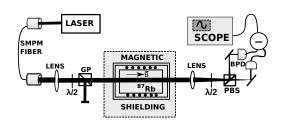

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

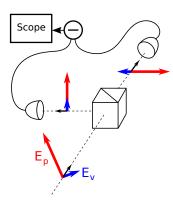


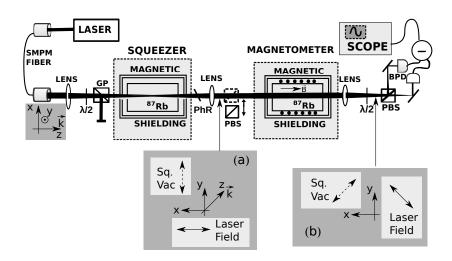
LASER


FIBER

LENS

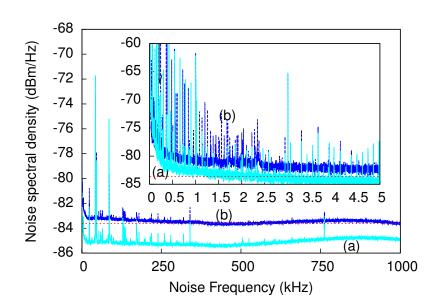
Magnetometer response vs atomic density


Shot noise limit of the magnetometer

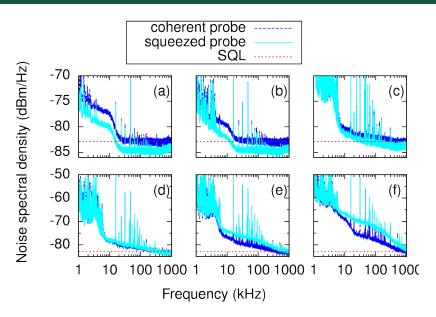

$$S = |E_{p} + E_{v}|^{2} - |E_{p} - E_{v}|^{2}$$

$$S = 4E_{p}E_{v}$$

$$< \Delta S > \sim E_{p} < \Delta E_{v} >$$

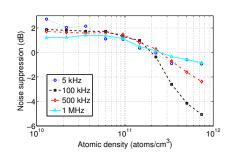


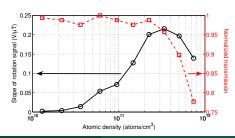
Squeezed enhanced magnetometer setup



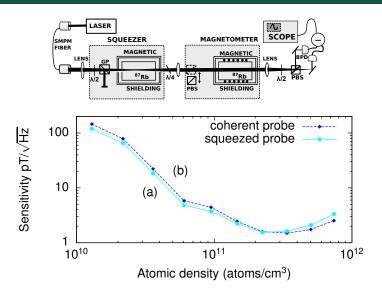
Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Magnetometer noise floor improvements

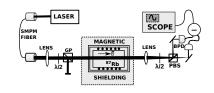

Magnetometer noise spectra

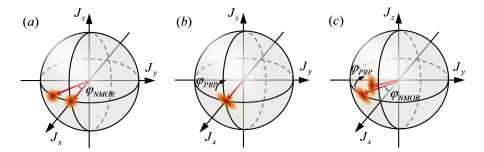


Noise suppression and response vs atomic density

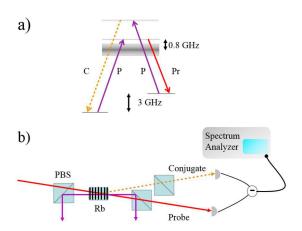

Noise suppression

Response




Magnetometer with squeezing enhancement

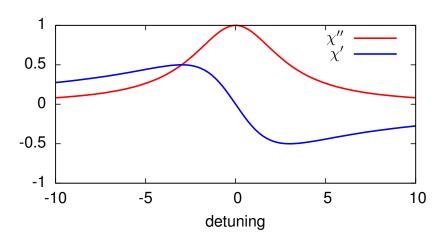
T. Horrom, et al. **PRA**, 86, 023803, (2012).


Self-squeezed magnetometry

Irina Novikova, Eugeniy E. Mikhailov, Yanhong Xiao, "Excess optical quantum noise in atomic sensors", Phys. Rev. A, **91**, 051804(R), (2015)

20 pT/ $\sqrt{\text{Hz}}$ self-squeezed magnetometry with 4WM

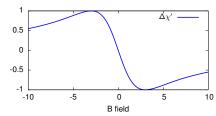
N. Otterstrom, R. C. Pooser, and B. J. Lawrie, "Nonlinear optical magnetometry with accessible in situ optical squeezing", Optics Letters, **39**, Issue 22, pp. 6533-6536 (2014)

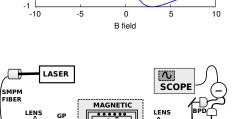

Why superluminal squeezing?

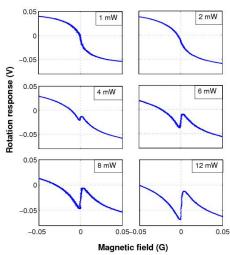
- Quantum memories
- M. S. Shahriar, et al. "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light", Phys. Rev. A 75(5), 053807, 2007.
- R. W. Boyd, et al. "Noise properties of propagation through slowand fast- light media", Journal of Optics **12**, 104007 (2010).

Light group velocity

Group velocity
$$v_g = rac{c}{\omega rac{\partial n}{\partial \omega}}$$

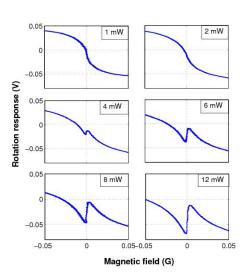

Susceptibility




Susceptibility and non linear Faraday effect

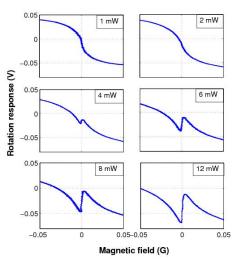
Naive model of rotation

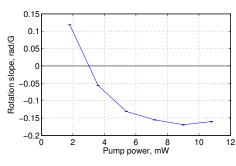
Experiment



Light group velocity

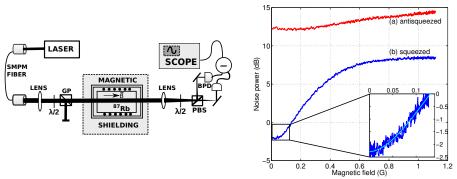
Group velocity
$$v_g = rac{c}{\omega rac{\partial n}{\partial \omega}}$$


Delay
$$au = rac{L}{v_g} \sim rac{\partial n}{\partial \omega} \sim rac{\partial R}{\partial B}$$

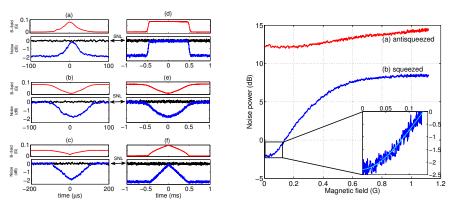


Light group velocity

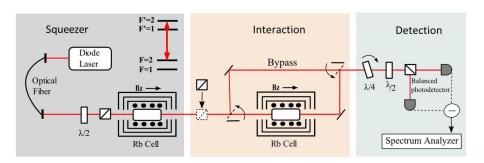
Group velocity
$$v_g = rac{c}{\omega rac{\partial n}{\partial \omega}}$$


Delay
$$au = \frac{L}{v_g} \sim \frac{\partial n}{\partial \omega} \sim \frac{\partial R}{\partial B}$$

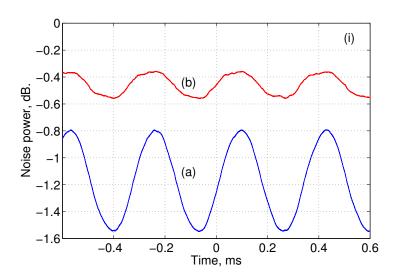
Squeezing vs magnetic field


Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

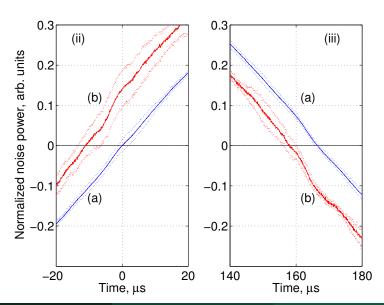
Travis Horrom et al. "All-atomic source of squeezed vacuum with full pulse-shape control", Journal of Physics B: Atomic, Molecular and Optical Physics, Issue 12, 45, 124015, (2012).

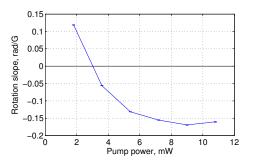

Squeezing vs magnetic field

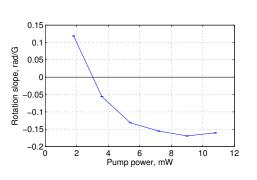
Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

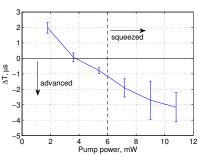


Travis Horrom et al. "All-atomic source of squeezed vacuum with full pulse-shape control", Journal of Physics B: Atomic, Molecular and Optical Physics, Issue 12, 45, 124015, (2012).


Time advancement setup


Squeezing modulation and time advancement


Squeezing modulation and time advancement

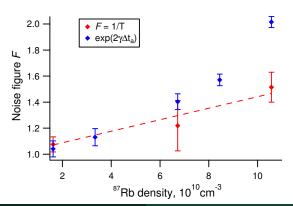


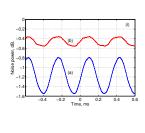
Advancement vs power



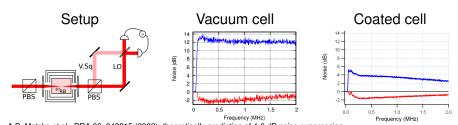
Advancement vs power

Squeezing advancement vs atomic density

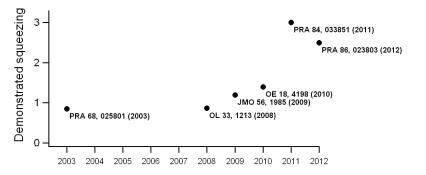


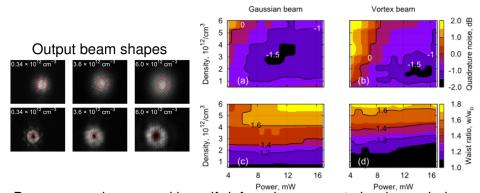

G. Romanov, et al. Optics Letters, Issue 4, 39, 1093-1096, (2014).

Noise figure and advancement


R. W. Boyd, et al. "Noise properties of propagation through slow- and fast- light media", Journal of Optics **12**, 104007 (2010).

$$F = \frac{SNR_{in}}{SNR_{out}} = 1/T = e^{2\gamma \Delta t_a}$$




Polarization self-rotation (PSR) squeezing

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

Self-focusing and squeezing relationship

Beam expansion caused by self-defocusing seems to be decoupled from measured squeezing amount variation.

Mi Zhang, Joseph Soultanis, Irina Novikova, and Eugeniy E. Mikhailov, "Generating squeezed vacuum field with nonzero orbital angular momentum with atomic ensembles", Optics Letters, Vol. 38, Issue 22, pp. 4833-4836 (2013)

Beer-Lambert law

$$dI = -NI\alpha dz$$

$$I = I_0 exp(-\tau)$$

where τ is optical depth

$$\tau = \alpha NL$$

Beer-Lambert law

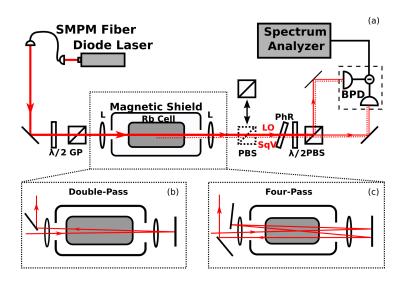
$$dI = -NI\alpha dz$$

$$I = I_0 exp(-\tau)$$

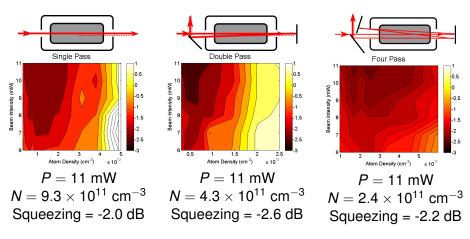
where τ is optical depth

$$\tau = \alpha NL$$

Will we get equivalent result for the following cases?

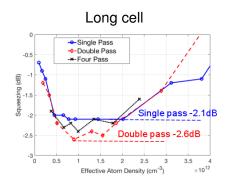

double the medium length

double the medium density

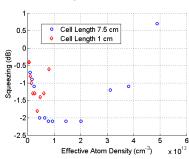

$$\tau = \alpha N(2L)$$

$$\tau = \alpha(2N)L$$

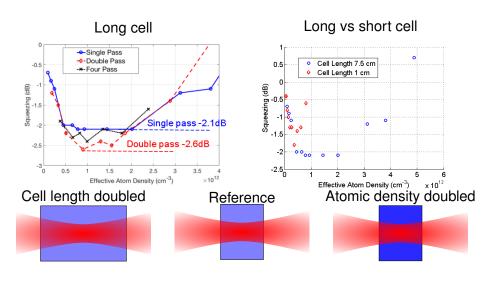
Multipass setup

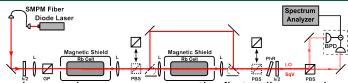


Optical depth dependence

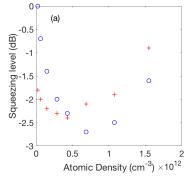


Mi Zhang, Melissa A. Guidry, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Multi-pass configuration for Improved Squeezed Vacuum Generation in Hot Rb Vapor", Physical Review A, 96, 013835, (2017)

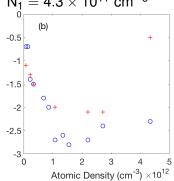

Squeezing vs effective optical depth


Long vs short cell

Squeezing vs effective optical depth


Double cell setup: atomic density optimization

+: combined squeezing

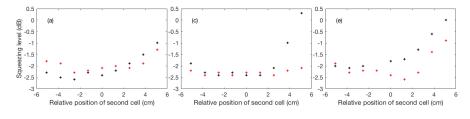

1st cell atomic density

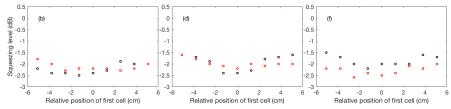
$$N_1 = 9.3 \times 10^{11} \text{ cm}^{-3}$$

o: the first cell squeezing filtered 1st cell atomic density

$$N_1 = 4.3 \times 10^{11} \text{ cm}^{-3}$$

Double cell setup: position optimization

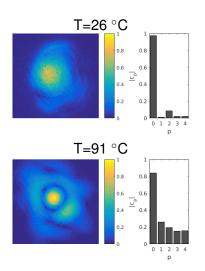

atomic densities:

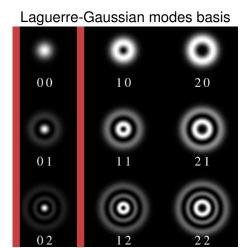

atomic densities:

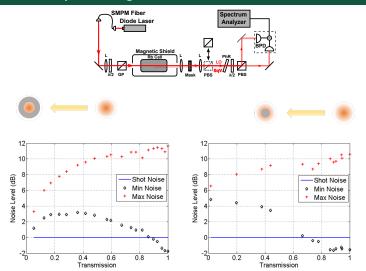
$$N_1 = 4.3 \times 10^{11} \text{ cm}^{-3}$$

 $N_2 = 4.3 \times 10^{11} \text{ cm}^{-3}$

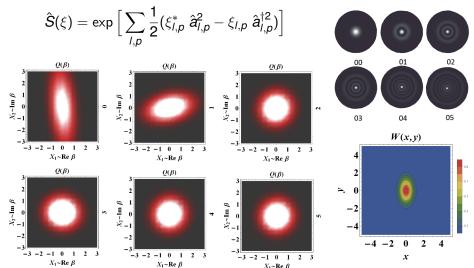
$$\begin{array}{l} N_1 = 4.3 \times 10^{11} \ cm^{-3} \\ N_2 = 9.3 \times 10^{11} \ cm^{-3} \end{array}$$


$$\begin{array}{l} N_1 = 9.3 \times 10^{11} \text{ cm}^{-3} \\ N_2 = 9.3 \times 10^{11} \text{ cm}^{-3} \end{array}$$

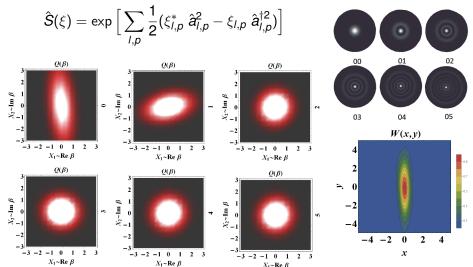



+/o: combined squeezing; +/o: the first cell squeezing filtered

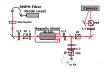
Multimode pump output



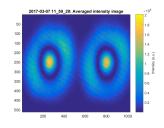
Multimode squeezing

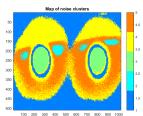

Mi Zhang, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Spatial multimode structure of atom-generated squeezed light", Phys. Rev. A, 93, 013853, (2016). Zhihao Xiao, R. Nicholas Lanning, Mi Zhang, Irina Novikova, Eugeniy E. Mikhailov, Jonathan P. Dowling, "Why a hole is like a beam splitter—a general diffraction theory for multimode quantum states of light", Phys. Rev. A, 96, 023829, (2017).

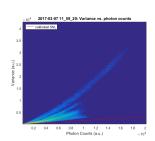
Multimode squeezing decomposition

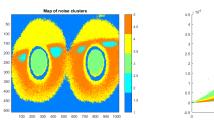

Mi Zhang, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Spatial multimode structure of atom-generated squeezed light", Phys. Rev. A, 93, 013853, (2016).

Multimode squeezing decomposition




Mi Zhang, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Spatial multimode structure of atom-generated squeezed light", Phys. Rev. A, 93, 013853, (2016).


Quantum imaging effort: from owl to sloth



People

WM: Mi Zhang, Demetrious T. Kutzke, Melissa A. Guidry, Irina Novikova, Gleb Romanov, Travis Horrom

Zhihao Xiao

Jonathan P. Dowling

Summary

- fully atomic squeezed enhanced magnetometer with sensitivity as low as 1 pT/√Hz
- superluminal squeezing propagation with $v_g \approx -7'000$ m/s $\approx -c/43'000$ or time advancement of 11 μ S
- We were able to improve squeezing by multipass configuration
- Our squeezed state is a set of competing multimodes
- We are working on quantum modes extraction and imaging

Financial support by AFOSR, ARO, and NSF.