Squeezing vacuum with Rb atoms: quantum enhanced magnetometry and competition of spatial modes.

Eugeniy E. Mikhailov

CHARTERED 1693

CICESE, August 20, 2018

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

About College of William and Mary

Transition from classical to quantum field

Classical analog

- Field amplitude a
- Field real part $X_1 = (a^* + a)/2$
- Field imaginary part $X_2 = i(a^* a)/2$

Quantum approach

- Field operator â
- Amplitude quadrature $\hat{X_1} = (\hat{a}^\dagger + \hat{a})/2$
- Phase quadrature $\hat{\chi_2} = i(\hat{a}^{\dagger} \hat{a})/2$

Light consist of photons • $\hat{N} = a^{\dagger} a$ Commutator relationship • $[a, a^{\dagger}] = 1$ • $[X_1, X_2] = i/2$ Detectors measure number of photons N • Quadratures \hat{X}_1 and \hat{X}_2 Uncertainty relationship • $\Delta X_1 \Delta X_2 > 1/4$

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N \geq 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N \geq 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Optics equivalent strict definition

 $\Delta X_1 \Delta X_2 \ge 1/4$

Take a vacuum state |0>

Take a vacuum state |0>

Apply squeezing operator $|\xi>=\hat{S}(\xi)|0>$

$$\hat{S}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$

Notice $\Delta X_1 \Delta X_2 = \frac{1}{4}$

Tools for squeezing

Tools for squeezing

Tools for squeezing

Two photon squeezing picture

Squeezing operator

$$\hat{S}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$

Parametric down-conversion in crystal

$$\hat{H}=i\hbar\chi^{(2)}(a^{2}b^{\dagger}-a^{\dagger2}b)$$

Squeezing

maximum squeezing value detected 15 dB at 1064 nm Henning Vahlbruch, Moritz Mehmet, Karsten Danzmann, and Roman Schnabel Phys. Rev. Lett **117**, 110801 (2016)

- shot noise limited optical sensors enhancements
- noiseless signal amplification
- photon pair generation, entanglement, true single photon sources
- interferometers sensitivity boost (for example gravitational wave antennas)
- light free measurements
- quantum memory probe and information carrier

Self-rotation of elliptical polarization in atomic medium

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + rac{igL}{2}(a^{\dagger}_{in} - a_{in})$$

Self-rotation of elliptical polarization in atomic medium

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + rac{igL}{2}(a^{\dagger}_{in} - a_{in})$$

Noise contrast vs detuning in hot ⁸⁷Rb vacuum cell

Squeezing region

Squeezing

Anti-squeezing

Observation of reduction of quantum noise below the shot noise limit is corrupted by the excess noise due to atomic interaction with atoms.

Maximally squeezed spectrum with ⁸⁷Rb

W&M team. ⁸⁷Rb $F_g = 2 \rightarrow F_e = 2$, laser power 7 mW, T=65° C

Lezama et.al report 3 dB squeezing in similar setup Phys. Rev. A 84, 033851 (2011)

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

 87 Rb D₁ line

 87 Rb D₁ line

 87 Rb D₁ line

Eugeniy E. Mikhailov (W&M)

CICESE, August 20, 2018 17 / 51

 87 Rb D₁ line

 87 Rb D₁ line

 87 Rb D₁ line

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Shot noise limit of the magnetometer

Squeezed enhanced magnetometer setup

Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

Magnetometer noise floor improvements

Magnetometer noise spectra

Noise suppression and response vs atomic density

Noise suppression

Response

Magnetometer with squeezing enhancement

T. Horrom, et al. **PRA**, 86, 023803, (2012).

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

Self-squeezed magnetometry

Irina Novikova, Eugeniy E. Mikhailov, Yanhong Xiao, "Excess optical quantum noise in atomic sensors", Phys. Rev. A, **91**, 051804(R), (2015)

20 pT/ \sqrt{Hz} self-squeezed magnetometry with 4WM

N. Otterstrom, R. C. Pooser, and B. J. Lawrie, "Nonlinear optical magnetometry with accessible in situ optical squeezing", Optics Letters, **39**, Issue 22, pp. 6533-6536 (2014)

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

- Quantum memories
- M. S. Shahriar, et al. "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light", Phys. Rev. A 75(5), 053807, 2007.
- R. W. Boyd, et al. "Noise properties of propagation through slowand fast- light media", Journal of Optics **12**, 104007 (2010).

Light group velocity

Group velocity
$$v_g = \frac{c}{\omega \frac{\partial n}{\partial \omega}}$$

Susceptibility

Susceptibility and non linear Faraday effect

Naive model of rotation

Experiment

Light group velocity

Group velocity
$$v_g = \frac{c}{\omega \frac{\partial n}{\partial \omega}}$$

Magnetic field (G)

Delay
$$\tau = \frac{L}{v_g} \sim \frac{\partial n}{\partial \omega} \sim \frac{\partial R}{\partial B}$$

Light group velocity

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

Travis Horrom et al. "All-atomic source of squeezed vacuum with full pulse-shape control", Journal of Physics B: Atomic, Molecular and Optical Physics, Issue 12, 45, 124015, (2012).

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

Travis Horrom et al. "All-atomic source of squeezed vacuum with full pulse-shape control", Journal of Physics B: Atomic, Molecular and Optical Physics, Issue 12, 45, 124015, (2012).

Squeezing modulation and time advancement

Squeezing modulation and time advancement

Advancement vs power

Advancement vs power

Squeezing advancement vs atomic density

G. Romanov, et al. Optics Letters, Issue 4, 39, 1093-1096, (2014).

Noise figure and advancement

R. W. Boyd, et al. "Noise properties of propagation through slow- and fast- light media", Journal of Optics **12**, 104007 (2010).

$${\cal F}=rac{SNR_{in}}{SNR_{out}}=1/T=e^{2\gamma\Delta t_a}$$

Polarization self-rotation (PSR) squeezing

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

Self-focusing and squeezing relationship

Beam expansion caused by self-defocusing seems to be decoupled from measured squeezing amount variation.

Mi Zhang, Joseph Soultanis, Irina Novikova, and Eugeniy E. Mikhailov, "Generating squeezed vacuum field with nonzero orbital angular momentum with atomic ensembles", Optics Letters, Vol. 38, Issue 22, pp. 4833-4836 (2013)

Beer-Lambert law

$$dI = -NI\alpha dz$$
$$I = I_0 exp(-\tau)$$

where τ is optical depth

 $\tau = \alpha NL$

$$dI = -NI\alpha dz$$
$$I = I_0 exp(-\tau)$$

where τ is optical depth

 $\tau = \alpha NL$

Will we get equivalent result for the following cases?

double the medium length

double the medium density

$$\tau = \alpha N(2L) \qquad \qquad \tau = \alpha(2N)L$$

Optical depth dependence

Mi Zhang, Melissa A. Guidry, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Multi-pass configuration for Improved Squeezed Vacuum Generation in Hot Rb Vapor", Physical Review A, 96, 013835, (2017)

Squeezing vs effective optical depth

Squeezing vs effective optical depth

Double cell setup: atomic density optimization

Double cell setup: position optimization

Multimode pump output

Laguerre-Gaussian modes basis

Multimode squeezing

Mi Zhang, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Spatial multimode structure of atom-generated squeezed light", Phys. Rev. A, 93, 013853, (2016).

Zhihao Xiao, R. Nicholas Lanning, Mi Zhang, Irina Novikova, Eugeniy E. Mikhailov, Jonathan P. Dowling, "Why a hole is like a beam splitter-a general diffraction theory for multimode quantum states of light", Phys. Rev. A, 96, 023829, (2017).

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

Multimode squeezing decomposition

$$\hat{S}(\xi) = \exp \left[\sum_{l,p} rac{1}{2} (\xi_{l,p}^* \ \hat{a}_{l,p}^2 - \xi_{l,p} \ \hat{a}_{l,p}^{\dagger 2})
ight]$$

Mi Zhang, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Spatial multimode structure of atom-generated squeezed light", Phys. Rev. A, 93, 013853, (2016).

Multimode squeezing decomposition

$$\hat{S}(\xi) = \exp \left[\sum_{l,p} rac{1}{2} (\xi_{l,p}^* \ \hat{a}_{l,p}^2 - \xi_{l,p} \ \hat{a}_{l,p}^{\dagger 2})
ight]$$

Mi Zhang, R. Nicholas Lanning, Zhihao Xiao, Jonathan P. Dowling, Irina Novikova, Eugeniy E. Mikhailov, "Spatial multimode structure of atom-generated squeezed light", Phys. Rev. A, 93, 013853, (2016).
Quantum imaging effort: from owl to sloth

Eugeniy E. Mikhailov (W&M)

Squeezing with Rb

CICESE, August 20, 2018 49 / 51

People

WM: Mi Zhang, Demetrious T. Kutzke, Melissa A. Guidry, Irina Novikova, Gleb Romanov, Travis Horrom

LSU: R. Nicholas Lanning

Zhihao Xiao

Jonathan P. Dowling

Eugeniy E. Mikhailov (W&M)

- fully atomic squeezed enhanced magnetometer with sensitivity as low as 1 pT/\sqrt{Hz}
- superluminal squeezing propagation with $v_g \approx -7'000$ m/s $\approx -c/43'000$ or time advancement of 11 μ S
- We were able to improve squeezing by multipass configuration
- Our squeezed state is a set of competing multimodes
- We are working on quantum modes extraction and imaging

Financial support by AFOSR, ARO, and NSF.