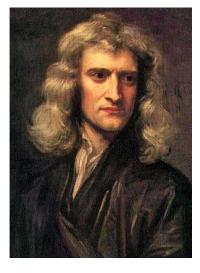
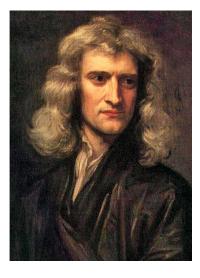
LIGO and discovery of the gravitational waves

and Eugeniy E. Mikhailov


January 31st, 2017

■LIGOLIGO Scientific Collaboration

Newton's laws 1686


$$F_g = G \frac{m_1 m_2}{r^2}$$

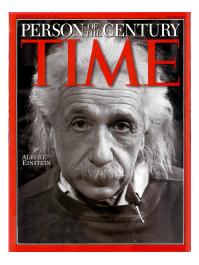
Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Newton's laws 1686

$$F_g = G \frac{m_1 m_2}{r^2}$$

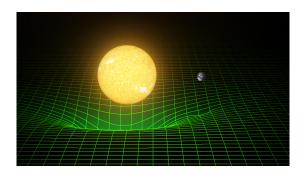

Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Did not explained precession of Mercury orbit

Einstein's laws 1915



The General Theory of Relativity and theory of Gravity (1915)

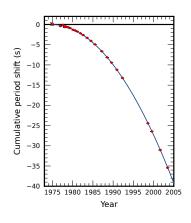
- No absolute motion thus only relative motion
- Space and time are not separate thus four dimensional space-time
- Gravity is not a force acting at a distance thus warpage of space-time

General relativity

- A geometric theory connecting matter to spacetime
- Matter tells spacetime how to curve
- Spacetime tells matter how to move

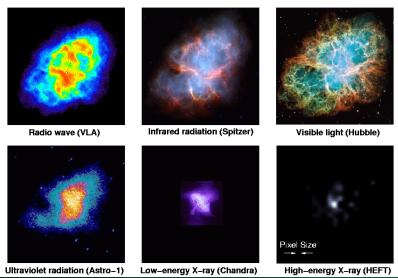
important predictions

- \bullet Light path bends in vicinity of massive object \rightarrow confirmed in 1919
- Gravitational radiation (waves) → confirmed indirectly in 1974


Indirect observation of gravitational wave

Emission of gravitational radiation from pulsar PSR1913+16 leads to loss of orbital energy.

- orbital period decreased by 36 sec from 1975 to 2005
- measured to 50 ms accuracy
- deviation grows quadratically with time


This can be explained by general relativistic effects: J.H. Taylor and J.M. Weisberg, Astrophysical Journal, Part 1, vol. 253, Feb. 15, 1982, p. 908-920.

Nobel prize in 1993 to Hulse and Taylor

New view to the universe

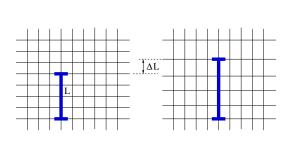
Crab Nebula: Remnant of an Exploded Star (Supernova)

Astrophysics with GWs vs. E&M

E&M (photons)

- Space as medium for field
- Accelerating charge
- Absorbed, scattered, dispersed by matter
- 10 MHz and up
- Light = not dark (but >95% of Universe is dark)

GW


- Spacetime itself ripples
- Accelerating aspherical mass
- Very small interaction; matter is transparent
- 10 kHz and down
- Radiated by dark mass distributions

Gravitational waves (GW)

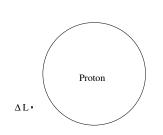
- Predicted by the General Theory of Relativity
- Generated by aspherical mass distribution
- Induce space-time ripples which propagate with speed of light

GW stretch and squeeze space-time thus move freely floating objects

Strain - strength of GW

$$h = \frac{\Delta L}{L} \tag{1}$$

expected strain


$$h \sim 10^{-21}$$

Gravitational waves (GW)

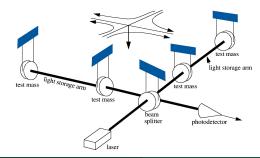
- Predicted by the General Theory of Relativity
- Generated by aspherical mass distribution
- Induce space-time ripples which propagate with speed of light

GW stretch and squeeze space-time thus move freely floating objects

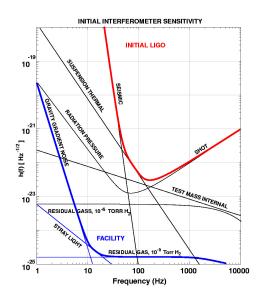
Strain - strength of GW

$$h = \frac{\Delta L}{L} \tag{1}$$

expected strain


$$h \sim 10^{-21}$$
 (2)

Laser Interferometer Gravitational-wave Observatory



- *L* = 4 km
- $h \sim 10^{-23}$

Initial LIGO sensitivity goal and noise budget

Displacement noise

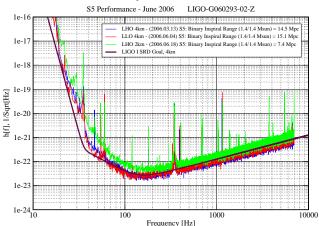
- seismic
- thermal suspension
- thermal Brownian
- radiation pressure noise

Detection noise

- electronics
- shot noise

LIGO sensitivity, S1-S4 runs

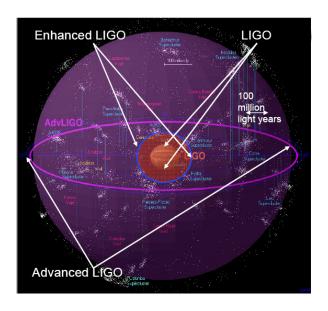
Best Strain Sensitivities for the LIGO Interferometers

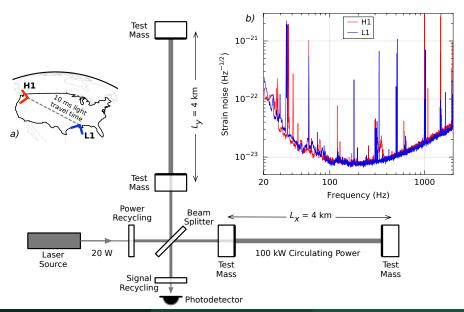

Inspiral search range during S4 was 8Mpc

Eugeniy Mikhailov (W&M) LIGO and GW January 31st, 2017

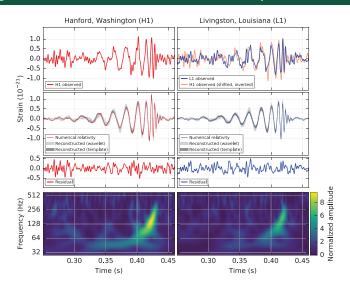
12 / 29

LIGO sensitivity, S5 run, June 2006

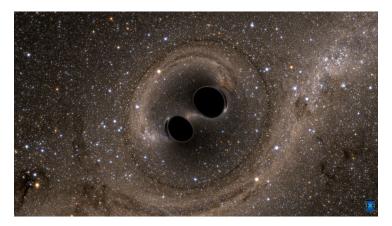

Strain Sensitivity for the LIGO Interferometers


Eugeniy Mikhailov (W&M) LIGO and GW January 31st, 2017

13 / 29

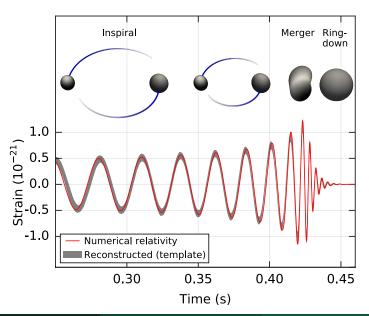

From LIGO to advanced LIGO

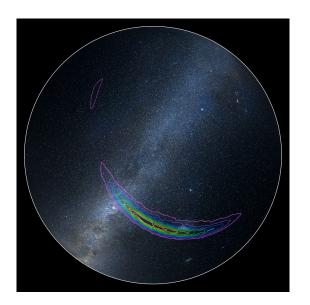
advanced LIGO detector summary


GW signal at 09:50:45 UTC on 14 September 2015

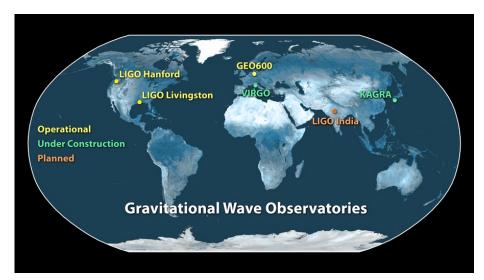
LIGO Scientific Collaboration, "Observation of Gravitational Waves from a Binary Black Hole Merger", Phys. Rev. Lett., 116, 061102, (2016).

The sound of gravitational wave and simulated sky


- The Sound of Two Black Holes Colliding
- Two Black Holes Merge into One


Two black holes with 29 and 36 solar masses merged about 1.3 billion years ago

17 / 29


Reconstructed signal

GW source location at the southern hemisphere sky

World wide network of detectors

Confirmed GW detections

Event name	GW150914	GW151226
Mass 1	36 <i>M</i> _⊙	14.2 <i>M</i> _⊙
Mass 2	29 <i>M</i> _⊙	7.5 <i>M</i> _⊙
Final mass	62 <i>M</i> _⊙	20.8 <i>M</i> _⊙

LIGO Scientific Collaboration:

"Observation of Gravitational Waves from a Binary Black Hole Merger", Phys. Rev. Lett., 116, 061102, (2016).

"GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence", Phys. Rev. Lett., 116, 241103, (2016).

Seismic isolation

Photo from LIGO Magazine http://www.ligo.org/magazine/

Eugeniy Mikhailov (W&M) LIGO and GW January 31st, 2017 22 / 29

Part of large system

Photo from LIGO Magazine http://www.ligo.org/magazine/

Eugeniy Mikhailov (W&M) LIGO and GW January 31st, 2017 23 / 29

Work in chamber

Inside vacuum chamber

Photo from LIGO Magazine http://www.ligo.org/magazine/

Mirror

Photo from LIGO Magazine http://www.ligo.org/magazine/

26 / 29

Inner test mass

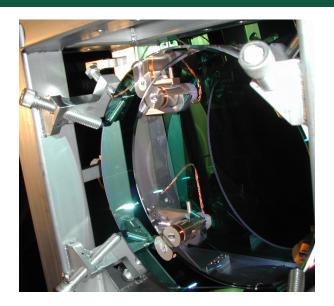


Photo from LIGO Magazine http://www.ligo.org/magazine/

Eugeniy Mikhailov (W&M) LIGO and GW January 31st, 2017

27 / 29

We can detect stars collisions and ...

Summary

- Gravitational waves exist and they are detected
- Moreover we can learn from them and do GW astronomy
- The future is in quantum noise suppression