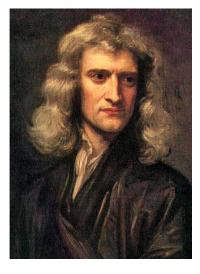
LIGO, squeezed states of light, and nonlinear light-atom interactions.

and Eugeniy E. Mikhailov

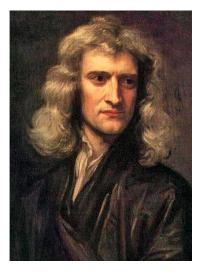
June 24th, 2016

Outline


- 1 LSC
- 2 History of gravity
- 3 Detectors
- 4 Detection
- Second Assorted LIGO pictures
- 6 Squeezing
- Squeezing and atoms

■LIGOLIGO Scientific Collaboration

Newton's laws 1686


$$F_g = G \frac{m_1 m_2}{r^2}$$

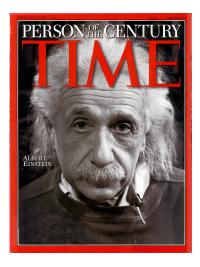
Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Newton's laws 1686

$$F_g = G \frac{m_1 m_2}{r^2}$$

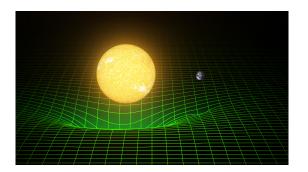

Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Did not explained precession of Mercury orbit

Einstein's laws 1915



The General Theory of Relativity and theory of Gravity (1915)

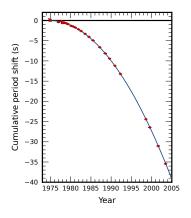
- No absolute motion thus only relative motion
- Space and time are not separate thus four dimensional space-time
- Gravity is not a force acting at a distance thus warpage of space-time

General relativity

- A geometric theory connecting matter to spacetime
- Matter tells spacetime how to curve
- Spacetime tells matter how to move

important predictions

- ullet Light path bends in vicinity of massive object o confirmed in 1919
- ullet Gravitational radiation (waves) o confirmed indirectly in 1974


Indirect observation of gravitational wave

Emission of gravitational radiation from pulsar PSR1913+16 leads to loss of orbital energy.

- orbital period decreased by 36 sec from 1975 to 2005
- measured to 50 ms accuracy
- deviation grows quadratically with time

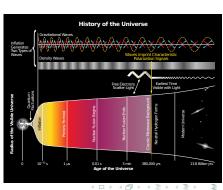
This can be explained by general relativistic effects: J.H. Taylor and J.M. Weisberg, Astrophysical Journal, Part 1, vol. 253, Feb. 15, 1982, p. 908-920.

Nobel prize in 1993 to Hulse and Taylor

Astrophysical sources of GW

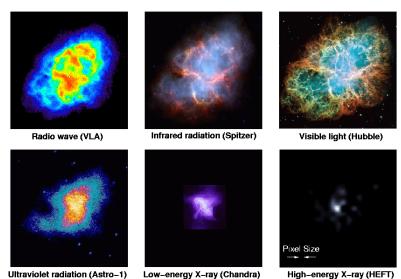
- Coalescing compact binaries
 - objects: NS-NS, BH-NS, BH-BH
 - physics regimes: Inspiral, merger, ringdown

- Periodic sources
 - spinning neutron stars (pulsars)



Astrophysical sources of GW (cont)

- Burst events
 - Supernovae with asymmetric collapse



- Stochastic background
 - right after Big Bang $(t = 10^{-43} \text{ sec})$
 - continuum of sources

New view to the universe

Crab Nebula: Remnant of an Exploded Star (Supernova)

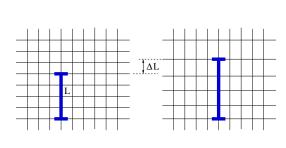
LIGO and squeezing

Astrophysics with GWs vs. E&M

E&M (photons)

- Space as medium for field
- Accelerating charge
- Absorbed, scattered, dispersed by matter
- 10 MHz and up
- Light = not dark (but >95% of Universe is dark)

GW

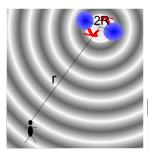

- Spacetime itself ripples
- Accelerating aspherical mass
- Very small interaction; matter is transparent
- 10 kHz and down
- Radiated by dark mass distributions

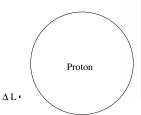
Gravitational waves (GW)

- Predicted by the General Theory of Relativity
- Generated by aspherical mass distribution
- Induce space-time ripples which propagate with speed of light

New tool for astrophysics

GW stretch and squeeze space-time thus move freely floating objects


Strain - strength of GW


$$h = \frac{\Delta L}{L} \tag{1}$$

expected strain

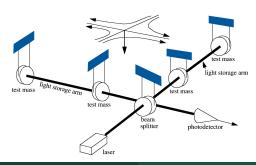
$$h \sim 10^{-21}$$

Typical strain

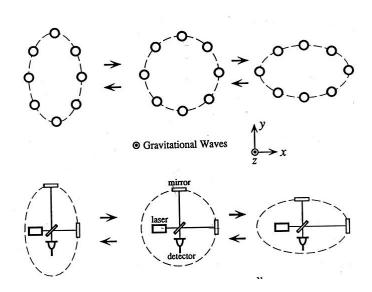
$$M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

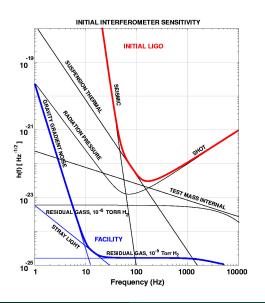
$$h = 4 \frac{G}{c^2} \frac{M_c}{r} \left(\frac{G}{c^3} \pi f M_c\right)^{2/3}$$

Two neutron star


with a mass of 1.4 solar masses each orbiting each other with a frequency $f=400~{\rm Hz}$ at a distance $2R=20~{\rm km}$ would generate strain $h\sim 10^{-21}$ at distance equal to $10^{23}~{\rm m}$ (distance to the Virgo cluster) For 4 km base line that would correspond to ΔL thousand times smaller than size of proton.

Laser Interferometer Gravitational-wave Observatory

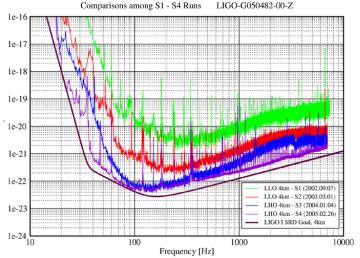



- L = 4 km
- $h \sim 10^{-23}$

GW acting on matter

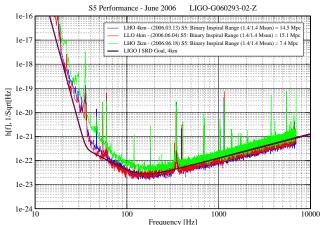
Initial LIGO sensitivity goal and noise budget

Displacement noise

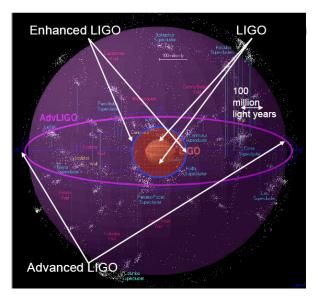

- seismic
- thermal suspension
- thermal Brownian
- radiation pressure noise

Detection noise

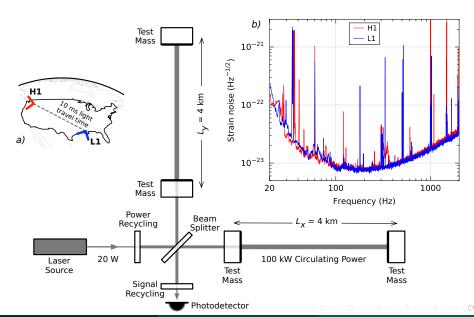
- electronics
- shot noise

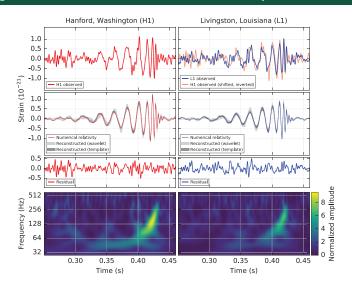

LIGO sensitivity, S1-S4 runs

Best Strain Sensitivities for the LIGO Interferometers

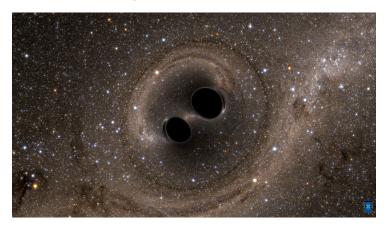


LIGO sensitivity, S5 run, June 2006

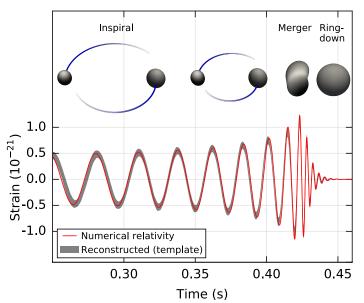

Strain Sensitivity for the LIGO Interferometers


From LIGO to advanced LIGO

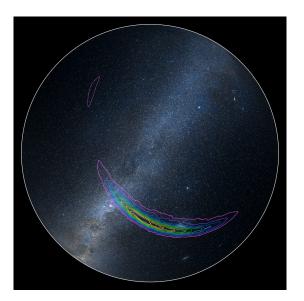
advanced LIGO detector summary


GW signal at 09:50:45 UTC on 14 September 2015

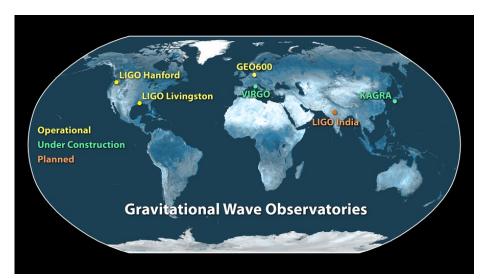
LIGO Scientific Collaboration, "Observation of Gravitational Waves from a Binary Black Hole Merger", Phys. Rev. Lett., 116, 061102 (2016).


The sound of gravitational wave and simulated sky

- The Sound of Two Black Holes Colliding
- Two Black Holes Merge into One



Two black holes with 29 and 36 solar masses merged about 1.3 billion years ago


Reconstructed signal

GW source location at the southern hemisphere sky

World wide network of detectors

Confirmed GW detections

Event name	GW150914	GW151226
Mass 1	36 <i>M</i> _⊙	14.2 <i>M</i> _⊙
Mass 2	29 <i>M</i> ⊙	7.5 <i>M</i> _⊙
Final mass	62 <i>M</i> _⊙	20.8 <i>M</i> _⊙

LIGO Scientific Collaboration:

"Observation of Gravitational Waves from a Binary Black Hole Merger", Phys. Rev. Lett., 116, 061102, (2016).

"GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence", Phys. Rev. Lett., 116, 241103, (2016).

Seismic isolation

Photo from LIGO Magazine http://www.ligo.org/magazine/

Eugeniy Mikhailov (W&M) LIGO and squeezing June 24th, 2016 27 / 48

Part of large system

Photo from LIGO Magazine http://www.ligo.org/magazine/

Eugeniy Mikhailov (W&M) LIGO and squeezing June 24th, 2016 28 / 48

Work in chamber

Inside vacuum chamber

Photo from LIGO Magazine http://www.ligo.org/magazine/

Mirror

Photo from LIGO Magazine http://www.ligo.org/magazine/

Eugeniy Mikhailov (W&M) LIGO and squeezing June 24th, 2016 31 / 48

Inner test mass

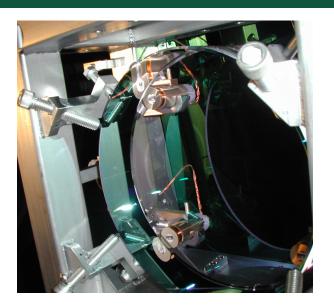


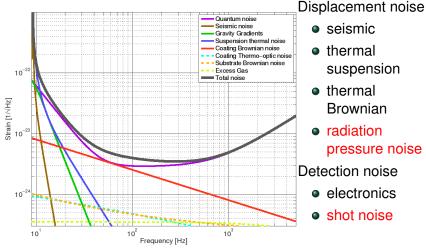
Photo from LIGO Magazine http://www.ligo.org/magazine/

We can detect stars collisions and ...

Additional links

www.ligo.org

Couple movies


- LIGO Generations http://www.space.com/ 28409-ligo-generations-the-film-hd-video.html
- LIGO: A Passion for Understanding http://www.space.com/ 25455-ligo-documentary-film-complete-coverage. html

You can help to detect a gravitational wave

www.einsteinathome.org

Advanced LIGO sensitivity goal and noise budget

"Advanced LIGO", Class. Quantum Grav., 32, 074001 (2015)

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N > 1$

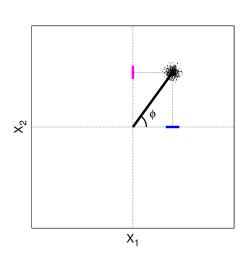
The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

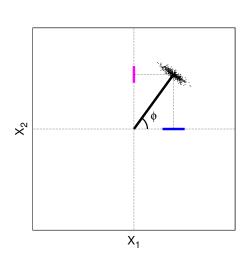
 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

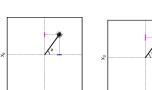

Optics equivalent

 $\Delta \phi \Delta N > 1$

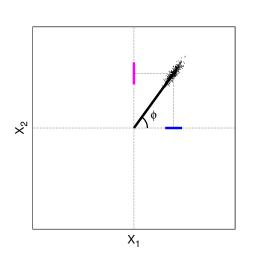
The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa


Optics equivalent strict definition

 $\Delta X_1 \Delta X_2 \geq 1/4$



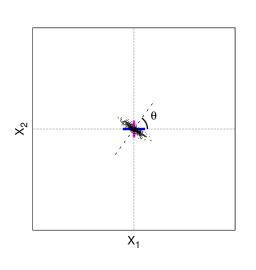
Unsqueezed coherent



Unsqueezed coherent

Amplitude squeezed

Unsqueezed coherent

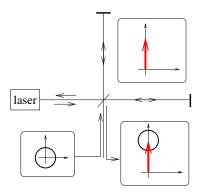

d Amplitude squeezed

Phase squeezed

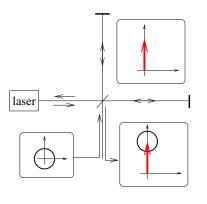
Unsqueezed coherent

Phase squeezed

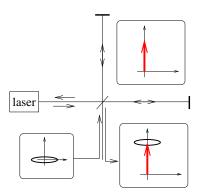
Amplitude squeezed


Vacuum squeezed

Squeezing and interferometer

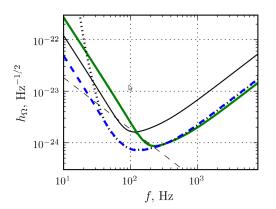

Squeezing and interferometer

Vacuum input



Squeezing and interferometer

Vacuum input



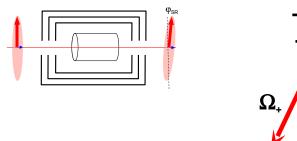
Squeezed input

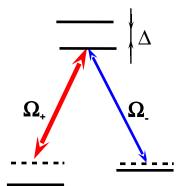
Interferometer sensitivity improvement with squeezing

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010) Projected advanced LIGO sensitivity

Demonstrations of quantum enhancement of LIGO

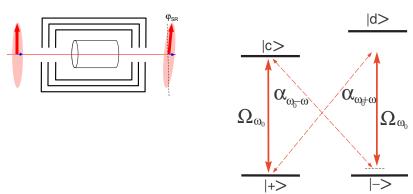
Keisuke Goda, et al., Nature Physics, **4**, 472-476, (2008) Ligo Scientific Collaboration, Nature Photonics **7**, 613-619 (2013)




Photo of Squeezer, LIGO Magazine http://www.ligo.org/magazine/

We are changing gears! From LSC results to studies at W&M.

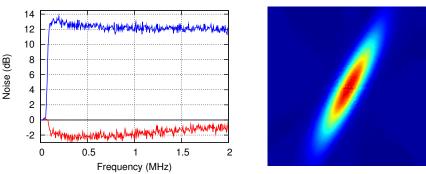
Self-rotation of elliptical polarization in atomic medium



A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in})$$

Self-rotation of elliptical polarization in atomic medium



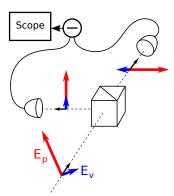
A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

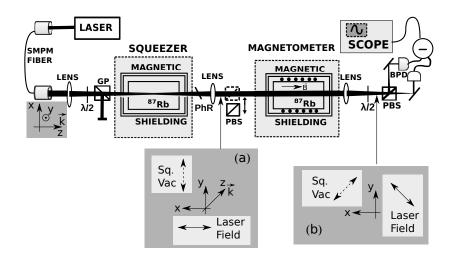
$$a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in})$$

Typical squeezed spectrum with ⁸⁷Rb

W&M team. ⁸⁷Rb $F_g = 2 \rightarrow F_e = 2$, laser power 7 mW, T=65° C

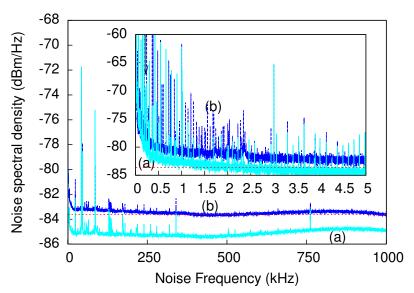
Lezama et.al report 3 dB squeezing in similar setup Phys. Rev. A 84, 033851 (2011)


Shot noise limit of the magnetometer

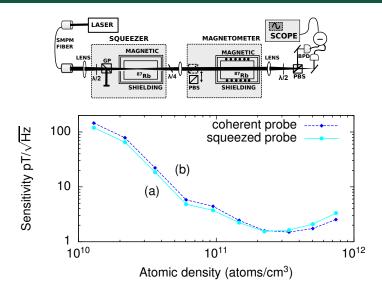

$$S = |E_{p} + E_{v}|^{2} - |E_{p} - E_{v}|^{2}$$

$$S = 4E_{p}E_{v}$$

$$< \Delta S > \sim E_{p} < \Delta E_{v} >$$



Squeezed enhanced magnetometer setup



Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Magnetometer noise floor improvements

Magnetometer with squeezing enhancement

T. Horrom, et al. **PRA**, 86, 023803, (2012).

Summary

- Gravitational waves exist and they are detected
- Moreover we can learn from them and do GW astronomy
- The future is in quantum noise suppression