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LSC

  

LIGO Scientific Collaboration
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Newton’s laws 1686

Fg = G
m1m2

r2

Laws of motion and law of gravitation
solved problems of astronomy and
terrestrial physics.

eccentric orbits
tides
perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus
and Kepler.
Did not explained precession of Mercury
orbit
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Einstein’s laws 1915

The General Theory of Relativity and
theory of Gravity (1915)

No absolute motion
thus only relative motion
Space and time are not separate
thus four dimensional space-time
Gravity is not a force acting at a
distance
thus warpage of space-time
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General relativity

A geometric theory connecting matter to spacetime
Matter tells spacetime how to curve
Spacetime tells matter how to move

important predictions
Light path bends in vicinity of massive object→ confirmed in 1919
Gravitational radiation (waves)→ confirmed indirectly in 1974
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Indirect observation of gravitational wave

Emission of gravitational radiation from pulsar PSR1913+16 leads to
loss of orbital energy.

orbital period decreased by 36
sec from 1975 to 2005
measured to 50 ms accuracy
deviation grows quadratically
with time

This can be explained by general
relativistic effects: J.H. Taylor and
J.M. Weisberg, Astrophysical
Journal, Part 1, vol. 253, Feb. 15,
1982, p. 908-920.
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Astrophysical sources of GW

Coalescing compact binaries
objects: NS-NS, BH-NS,
BH-BH
physics regimes: Inspiral,
merger, ringdown

Periodic sources
spinning neutron stars
(pulsars)
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Astrophysical sources of GW (cont)

Burst events
Supernovae with asymmetric
collapse

Stochastic background
right after Big Bang
(t = 10−43 sec)
continuum of
sources
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New view to the universe
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Astrophysics with GWs vs. E&M

E&M (photons)
Space as medium for field
Accelerating charge
Absorbed, scattered,
dispersed by matter
10 MHz and up
Light = not dark (but >95% of
Universe is dark)

GW
Spacetime itself ripples
Accelerating aspherical mass
Very small interaction; matter
is transparent
10 kHz and down
Radiated by dark mass
distributions
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Gravitational waves (GW)

Predicted by the General Theory of Relativity
Generated by aspherical mass distribution
Induce space-time ripples which propagate
with speed of light
New tool for astrophysics

GW stretch and squeeze space-time thus move freely floating objects

∆L

L

Strain - strength of GW

h =
∆L
L

(1)

expected strain

h ∼ 10−21 (2)

Eugeniy Mikhailov (W&M) LIGO and squeezing April 1st, 2016 12 / 47



Typical strain

L∆

Proton

Two neutron star
with a mass of 1.4 solar masses each
orbiting each other with a frequency f = 400 Hz
at a distance 2R = 20 km
would generate strain h ∼ 10−21

at distance equal to 1023 m
(distance to the Virgo cluster)
For 4 km base line that would correspond to
∆L thousand times smaller than size of proton.

Detection of GW is difficult problem
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Laser Interferometer Gravitational-wave Observatory

L = 4 km
h ∼ 10−23
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GW acting on matter
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Initial LIGO sensitivity goal and noise budget

Displacement noise
seismic
thermal
suspension
thermal
Brownian
radiation
pressure noise

Detection noise
electronics
shot noise
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LIGO sensitivity, S1-S4 runs

Inspiral search range during S4 was 8Mpc
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LIGO sensitivity, S5 run, June 2006
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Inspiral search range during S5 is 14Mpc
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From LIGO to advanced LIGO
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advanced LIGO detector summary
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GW signal at 09:50:45 UTC on 14 September 2015

LIGO Scientific Collaboration, "Observation of Gravitational Waves from a
Binary Black Hole Merger", Phys. Rev. Lett., 116, 061102, (2016).
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The sound of gravitational wave and simulated sky

The Sound of Two Black Holes Colliding
Two Black Holes Merge into One

Two black holes with 29 and 36 solar masses merged about 1.3 billion
years ago
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Reconstructed signal
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GW source location at the southern hemisphere sky
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World wide network of detectors
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Seismic isolation

Photo from LIGO Magazine http://www.ligo.org/magazine/
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Part of large system

Photo from LIGO Magazine http://www.ligo.org/magazine/
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Work in chamber

Photo from LIGO Magazine http://www.ligo.org/magazine/Eugeniy Mikhailov (W&M) LIGO and squeezing April 1st, 2016 28 / 47
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Inside vacuum chamber

Photo from LIGO Magazine http://www.ligo.org/magazine/
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Mirror

Photo from LIGO Magazine http://www.ligo.org/magazine/
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Inner test mass

Photo from LIGO Magazine http://www.ligo.org/magazine/
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We can detect stars collisions and ...
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Additional links

www.ligo.org

Couple movies
LIGO Generations http://www.space.com/
28409-ligo-generations-the-film-hd-video.html
LIGO: A Passion for Understanding http://www.space.com/
25455-ligo-documentary-film-complete-coverage.
html

You can help to detect a gravitational wave
www.einsteinathome.org
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Advanced LIGO sensitivity goal and noise budget

Displacement noise
seismic
thermal
suspension
thermal
Brownian
radiation
pressure noise

Detection noise
electronics
shot noise

"Advanced LIGO", Class. Quantum Grav., 32, 074001 (2015)
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Heisenberg uncertainty principle and its optics
equivalent

Heisenberg uncertainty principle
∆p∆x ≥ ~/2
The more precisely the POSITION is determined,
the less precisely the MOMENTUM is known,
and vice versa

Optics equivalent
∆φ∆N ≥ 1
The more precisely the PHASE is determined,
the less precisely the AMPLITUDE is known, and
vice versa

Optics equivalent strict definition
∆X1∆X2 ≥ 1/4
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Squeezed quantum states zoo
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Squeezing and interferometer

Vacuum input

laser

Squeezed input

laser
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Interferometer sensitivity improvement with squeezing

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)
Projected advanced LIGO sensitivity
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Demonstrations of quantum enhancement of LIGO

Keisuke Goda, et al., Nature Physics, 4, 472-476, (2008)
Ligo Scientific Collaboration, Nature Photonics 7, 613-619 (2013)

Photo of Squeezer, LIGO Magazine http://www.ligo.org/magazine/
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We are changing gears!
From LSC results to studies at W&M.
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Self-rotation of elliptical polarization in atomic medium

SR

∆

Ω+ Ω-

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of
4-6 dB noise suppression

aout = ain +
igL
2

(a†in − ain)
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Self-rotation of elliptical polarization in atomic medium
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Typical squeezed spectrum with 87Rb

W&M team. 87Rb Fg = 2→ Fe = 2, laser power 7 mW, T=65◦ C
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Lezama et.al report 3 dB squeezing in similar setup
Phys. Rev. A 84, 033851 (2011)
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Shot noise limit of the magnetometer

Rb Cell Rb Cell
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Squeezed enhanced magnetometer setup

Rb Cell Rb Cell

PhR λ/2λ/2

SMPM

FIBER

GP
LENS

PBS

LENS

PBS

BPD

SCOPE   SQUEEZER MAGNETOMETER

LENS

y

x

z
k

Laser

Field

Sq.

Vac

yx

z
k

y

x Laser

Field

Sq.

Vac

(a)

(b)

Note: Squeezed enhanced magnetometer was first demonstrated by
Wolfgramm et. al Phys. Rev. Lett, 105, 053601, 2010.
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Magnetometer noise floor improvements
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Magnetometer with squeezing enhancement

Rb Cell Rb Cell
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T. Horrom, et al. PRA, 86, 023803, (2012).
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Summary

Gravitational waves exist and they are detected
Moreover we can learn from them and do GW astronomy
The future is in quantum noise suppression
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