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From ray optics to semiclassical optics

Classical/Geometrical optics
light is a ray
which propagates straight
cannot explain diffraction and
interference

Semiclassical optics
light is a wave
color (wavelength/frequency) is
important
amplitude (a) and phase are
important, E(t) = aei(kz−ωt)

cannot explain residual
measurements noise
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Detector quantum noise

Simple photodetector

N
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V ∼ N

∆V ∼
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Classical field

E(φ) = |a|e−iφ = |a| cos(φ) + i |a| sin(φ) = X1 + iX2, φ = ωt − kz

Detectors sense the real part of the field (X1)
but there is a way to see X2 as well
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Classical quadratures vs time in a rotating frame

E(φ) = |a|e−iφ = |a| cos(φ) + i |a| sin(φ) = X1 + iX2, φ = ωt − kz
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Reality check quadratures vs time

E(φ) = |a|e−iφ = |a| cos(φ) + i |a| sin(φ) = X1 + iX2, φ = ωt − kz

X
2

X1

φ

P
ro

je
c
ti
o

n

t

Eugeniy E. Mikhailov (W&M) Nonlinear light-atom interactions Tulane, March 9, 2015 10 / 90



Transition from classical to quantum field

Classical analog
Field amplitude a
Field real part
X1 = (a∗ + a)/2
Field imaginary part
X2 = i(a∗ − a)/2

E(φ) = |a|e−iφ = X1 + iX2

X
2

X
1

φ

Quantum approach
Field operator â
Amplitude quadrature
X̂1 = (â† + â)/2
Phase quadrature
X̂2 = i(â† − â)/2

Ê(φ) = X̂1 + i X̂2

X
2

X
1

φ
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Quantum optics summary
X

2

X
1

φ

Light consist of photons
N̂ = a†a

Commutator relationship
[a,a†] = 1
[X1,X2] = i/2

Detectors measure
number of photons N̂
Quadratures X̂1 and X̂2

Uncertainty relationship
∆X1∆X2 ≥ 1/4
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Heisenberg uncertainty principle and its optics
equivalent

Heisenberg uncertainty principle
∆p∆x ≥ ~/2
The more precisely the POSITION is determined,
the less precisely the MOMENTUM is known,
and vice versa

Optics equivalent
∆φ∆N ≥ 1
The more precisely the PHASE is determined,
the less precisely the AMPLITUDE is known, and
vice versa

Optics equivalent strict definition
∆X1∆X2 ≥ 1/4
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Squeezed quantum states zoo
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Squeezed field generation recipe

Take a vacuum
state |0 >

X
2

X1

H =
1
2

Apply squeezing
operator |ξ >= Ŝ(ξ)|0 >

Ŝ(ξ) = e
1
2 ξ
∗a2− 1

2 ξa
†2

X
2

X
1

θ

Apply displacement
operator |α, ξ >= D̂(α)|s >

D̂(α) = eαa†−α∗a

X
2

X
1

φ

< α, ξ|X1|α, ξ > = Re(α),

< α, ξ|X2|α, ξ > = Im(α)
Notice ∆X1∆X2 = 1

4
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Squeezed state |ξ >= Ŝ(ξ)|0 > properties
X

2

X
1

θ

Ŝ(ξ) = e
1
2 ξ
∗a2− 1

2 ξa
†2
, ξ = reiθ

If θ = 0

< ξ|(∆X1)2|ξ > =
1
4

e−2r

< ξ|(∆X2)2|ξ > =
1
4

e2r

< ξ|(∆X1)2|ξ > =
1
4

(cosh2 r + sinh2 r − 2 sinh r cosh r cos θ)

< ξ|(∆X2)2|ξ > =
1
4

(cosh2 r + sinh2 r + 2 sinh r cosh r cos θ)
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Photon number of squeezed state |ξ >
X

2

X
1

θ

Probability to detect given number of
photons C =< n|ξ > for squeezed
vacuum

even

C2m = (−1)

√
(2m)!

2mm!

(eiθ tanh r)m
√

cosh r

odd
C2m+1 = 0

Average number of photons in general
squeezed state

< α, ξ|a†a|α, ξ >= α + sinh2 r
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Tools for squeezing

2ω
ω
ω

a

b

b
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Two photon squeezing picture

Squeezing operator

Ŝ(ξ) = e
1
2 ξ
∗a2− 1

2 ξa
†2

Parametric down-conversion in
crystal

Ĥ = i~χ(2)(a2b† − a†2b)

2ω
ω
ω

a

b

b

Squeezing
maximum squeezing value detected 11.5 dB at 1064 nm
Moritz Mehmet, Henning Vahlbruch, Nico Lastzka, Karsten Danzmann,
and Roman Schnabel, Phys. Rev. A 81, 013814 (2010)
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Possible squeezing applications

shot noise limited optical sensors enhancements
noiseless signal amplification
photon pair generation, entanglement, true single photon sources
interferometers sensitivity boost (for example gravitational wave
antennas)
light free measurements
quantum memory probe and information carrier

Eugeniy E. Mikhailov (W&M) Nonlinear light-atom interactions Tulane, March 9, 2015 25 / 90



Squeezing and interferometer

Vacuum input

laser

Squeezed input

laser
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Laser Interferometer Gravitational-wave Observatory

L = 4 km
h ∼ 2× 10−23

∆L ∼ 10−20 m
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Interferometer sensitivity improvement with squeezing

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)
Projected advanced LIGO sensitivity

Experimental demonstration with LIGO detectors
Nature Physics, 4, 472-476, (2008)
Nature Photonics 7, 613-619 (2013)
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Squeezed States Generated by Four-Wave Mixing

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley.
Phys. Rev. Lett. 55, 2409-2412 (1985)
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Squeezed States Generated by Four-Wave Mixing

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley.
Phys. Rev. Lett. 55, 2409-2412 (1985)

Analysis frequency = 422
MHz

Eugeniy E. Mikhailov (W&M) Nonlinear light-atom interactions Tulane, March 9, 2015 36 / 90



Four-wave-mixing induced squeezing

Vincent Boyer, Alberto M. Marino, Raphael C. Pooser and Paul D. Lett
Science, Vol. 321 no. 5888 pp. 544-547 (2008)
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Degenerate vacuum squeezing via four-wave-mixing

Neil V. Corzo, Quentin Glorieux, Alberto M. Marino, Jeremy B. Clark,
Ryan T. Glasser, and Paul D. Lett Phys. Rev. A 88, 043836 (2013)
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Self-rotation of elliptical polarization in atomic medium

SR

∆

Ω+ Ω-

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of
4-6 dB noise suppression

aout = ain +
igL
2

(a†in − ain)
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Setup
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Noise contrast vs detuning in hot 87Rb vacuum cell

Fg = 2→ Fe = 1,2
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Squeezing region

Squeezing Anti-squeezing

Observation of reduction of quantum noise below the shot noise limit is
corrupted by the excess noise due to atomic interaction with atoms.
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Maximally squeezed spectrum with 87Rb

W&M team. 87Rb Fg = 2→ Fe = 2, laser power 7 mW, T=65◦ C
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Lezama et.al report 3 dB squeezing in similar setup
Phys. Rev. A 84, 033851 (2011)
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Optical magnetometer based on Faraday effect
87Rb D1 line
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Optical magnetometer and non linear Faraday effect

Naive model of rotation

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Rb Cell Rb Cell

λ/2λ/2

SMPM
FIBER

GPLENS
MAGNETIC

SHIELDING

LENS

PBS

BPD

SCOPE

LASER

Rb87

B

Experiment

Eugeniy E. Mikhailov (W&M) Nonlinear light-atom interactions Tulane, March 9, 2015 51 / 90



Optical magnetometer and non linear Faraday effect
Naive model of rotation

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Rb Cell Rb Cell

λ/2λ/2

SMPM
FIBER

GPLENS
MAGNETIC

SHIELDING

LENS

PBS

BPD

SCOPE

LASER

Rb87

B

Experiment

Eugeniy E. Mikhailov (W&M) Nonlinear light-atom interactions Tulane, March 9, 2015 51 / 90



Magnetometer response vs atomic density
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Shot noise limit of the magnetometer
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Squeezed enhanced magnetometer setup
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Note: Squeezed enhanced magnetometer was first demonstrated by
Wolfgramm et. al Phys. Rev. Lett, 105, 053601, 2010.
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Magnetometer noise floor improvements
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Magnetometer with squeezing enhancement
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T. Horrom, et al. PRA, 86, 023803, (2012).
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Self-squeezed magnetometry
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Irina Novikova, Eugeniy E. Mikhailov, Yanhong Xiao, “Excess optical
quantum noise in atomic sensors”, arXiv:1410.3810, (2014).
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20 pT/
√

Hz self-squeezed magnetometry with 4WM

N. Otterstrom, R. C. Pooser, and B. J. Lawrie, “Nonlinear optical
magnetometry with accessible in situ optical squeezing”, Optics
Letters, 39, Issue 22, pp. 6533-6536 (2014)
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Sagnac effect in interferometer
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Sagnac effect and cavity response
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input

detector

output
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4AΩ

c

∆f = f0
∆p
p
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= ∆fempty
1
ng

Group index

ng(f ) = n + f0
∂n
∂f

Cavity response enhanced if ng < 1 i.e. under the fast light condition
Shahriar et al., PRA 75, 053807 (2007)
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EIT - slow light
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N-scheme, with forbidden transition - fast but no gain
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N-bar with four-wave mixing - fast and with gain
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N-bar with four-wave mixing - optimal parameters

N. B. Phillips, et al. Journal of Modern Optics, Issues 1, 60, 64-72,
(2013).
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N-bar with Doppler averaging

Refractive index Absorption

Stationary atoms

Room temperature
Doppler averaged
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N-bar field competition

Ω4 = 0 Ω4 = Ω2/2 Ω4 = Ω2

Ω1 = 2π3 MHz, Ω3 = 2π6 MHz, N = 109 cm−3
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N-bar beam propagation

z=1.6 cm z=2.4 cm z=10 cm
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N-bar beam propagation

z=1.6 cm z=2.4 cm z=10 cm
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N-bar levels and fields diagram

Artificial atom 87Rb atom
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N-bar scheme linearly polarized pumps - single pass

Transmission Delay
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Gyro lasing - no fast light condition

Lasing conditions
round trip gain is 1
round trip phase shift is 0

Simulation parameters
N = 9.6× 1010 1/cm3

δ1 = −2π × 800 MHz
δ3 = 0 MHz
Ω1 = 6 mW/cm2

Ω3 = 10 mW/cm2

Finesse = 18
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Gyro lasing - fast light condition, single frequency

Lasing conditions
round trip gain is 1
round trip phase shift is 0

Simulation parameters
N = 4.8× 1010 1/cm3

δ1 = 0 MHz
δ3 = 0 MHz
Ω1 = 48.2 mW/cm2

Ω3 = 192.9 mW/cm2

Finesse = 60

∆f = 150∆fempty .cavity
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Gyro lasing - fast light condition, multiple frequencies

Lasing conditions
round trip gain is 1
round trip phase shift is 0

Simulation parameters
N = 4.8× 1010 1/cm3

δ1 = 0 MHz
δ3 = 0 MHz
Ω1 = 50.6 mW/cm2, 5% higher
Ω3 = 192.9 mW/cm2

Finesse = 60

Multiple lazing points might be problematic in the experiment
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First gyro setup and its performance

Finesse = 20

→ Pulling 1/200

Ω2 tuned around F = 1→ F ′ = 1,2

E. Mikhailov, et al. Optical Engineering, Issue 10, 53, 102709, (2014)
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Gyro setup
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Gyro setup and lasing beat-note

Spectrum
analyzer 20 MHz span
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Gyro setup and lasing beat-note

Spectrum analyzer 20 MHz span
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Gyro pulling - response to cavity length change

Old

New

Pulling drastically improved by
mainly two factors

Higher finesse 20→ 70
Higher pumping powers

Higher pulling happens at D2
detuning where lasing tends to stop
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Why superluminal squeezing?

Quantum memories
M. S. Shahriar, et al. “Ultrahigh enhancement in absolute and
relative rotation sensing using fast and slow light”, Phys. Rev. A
75(5), 053807, 2007.
R. W. Boyd, et al. “Noise properties of propagation through slow-
and fast- light media”, Journal of Optics 12, 104007 (2010).
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Light group velocity

Group velocity vg = c
ω ∂n

∂ω

Susceptibility
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Light group velocity

Group velocity vg = c
ω ∂n

∂ω

Delay τ = L
vg
∼ ∂n

∂ω ∼ ∂R
∂B
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Light group velocity

Group velocity vg = c
ω ∂n
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Time advancement setup
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Squeezing modulation and time advancement
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Squeezing modulation and time advancement
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Squeezing advancement vs atomic density
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G. Romanov, et al. Optics Letters, Issue 4, 39, 1093-1096, (2014).
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Noise figure and advancement

R. W. Boyd, et al. “Noise properties of propagation through slow- and
fast- light media”, Journal of Optics 12, 104007 (2010).
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Summary

Utilizing non-linear light-atom interaction, we demonstrated
atomic squeezer
fully atomic squeezed enhanced magnetometer
with sensitivity as low as 1 pT/

√
Hz

feasibility of fast laser gyroscope
superluminal squeezing propagation
with vg ≈ −7′000 m/s ≈ −c/43′000 or time advancement of 11 µS

Support from
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