Towards fast-light gyroscope, modification of dispersion, and pulling sensitivity

Eugeniy E. Mikhailov, Matt T. Simons, Irina Novikova¹ Simon Rochester, Dmitry Budker²,

SPIE, 09 Febraury 2015

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-23-0) SPIE, 2015 1 / 21

Sagnac effect in interferometer

$$
t_{\pm} = \frac{2\pi R}{c} \left(1 \pm \frac{R\Omega}{c} \right)
$$

$$
\Delta t = t_{+} - t_{-} = \frac{4\pi R^{2}\Omega}{c^{2}}
$$

$$
\Delta \phi = 2\pi \frac{c\Delta t}{\lambda} = \frac{8\pi A\Omega}{c\lambda}
$$

K ロ ⊁ K 倒 ⊁ K 走 ⊁

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 2/21

 \rightarrow в

Sagnac effect and cavity response

 $\Delta p = c\Delta t = \frac{4A\Omega}{c}$ *c* $Δf = f₀ \frac{Δp}{p}$ *p* 1 $\frac{1}{n_g} = \Delta f_{empty} \frac{1}{n_g}$ *ng*

Group index

$$
n_g(f) = n + f_0 \frac{\partial n}{\partial f}
$$

Cavity response enhanced if $n_q < 1$ i.e. under the fast light condition Shahriar et al., PRA **75**, 053807 (2007)

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 4/21

重

 299

イロメ イ部メ イミメ イモメ

N-scheme, with forbidden transition - fast but no gain

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 5/21

4 0 8 1

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{B} \oplus \mathbf{A}$ $\oplus \mathbf{B}$

 ϵ 舌

N-bar with four-wave mixing - fast and with gain

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 6 / 21

4 0 8 1

 $\mathbf{A} \cap \mathbf{B}$ \mathbf{B} $\mathbf{A} \cap \mathbf{B}$ \mathbf{B}

 ϵ 舌

N-bar with four-wave mixing - optimal parameters

N. B. Phillips, *et al.* Journal of Modern Optics, Issues 1, 60, 64-72, (2013).

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 7/21

N-bar with Doppler averaging

N-bar field competition

 $\Omega_4=0$

$$
\Omega_4=\Omega_2/2
$$

$$
\Omega_4=\Omega_2
$$

4 0 8

 \triangleleft

 \mathcal{A} ∍

N-bar beam propagation

N-bar beam propagation

4 0 8

∍

N-bar scheme linearly polarized pumps - single pass

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 12 / 21

Gyro lasing - no fast light condition

Lasing conditions

- round trip gain is 1
- round trip phase shift is 0

Simulation parameters

- $N = 9.6 \times 10^{10}$ 1/cm³
- $\delta_1 = -2\pi \times 800$ MHz
- $\delta_3 = 0$ MHz
- $\Omega_1 = 6$ mW/cm²
- $\Omega_3 = 10$ mW/cm²
- \bullet Finesse = 18

 \rightarrow \rightarrow \rightarrow

Gyro lasing - fast light condition, single frequency

Lasing conditions

- round trip gain is 1
- round trip phase shift is 0

Simulation parameters

- $N = 4.8 \times 10^{10}$ 1/cm³
- $\delta_1 = 0$ MHz
- $\delta_3 = 0$ MHz
- $\Omega_1 = 48.2$ mW/cm²
- Ω ₃ = 192.9 mW/cm²
- \bullet Finesse = 60

∆*f* = 150∆*fempty*.*cavity*

 QQ

Gyro lasing - fast light condition, multiple frequencies

Lasing conditions

- round trip gain is 1
- round trip phase shift is 0

Simulation parameters

• $N = 4.8 \times 10^{10}$ 1/cm³

$$
\bullet\ \delta_1=0\ \text{MHz}
$$

- $\delta_3 = 0$ MHz
- $\Omega_1=$ 50.6 mW/cm 2 , 5% higher
- $\Omega_3 = 192.9$ mW/cm²
- \bullet Finesse = 60

Multiple lazing points might be problematic in t[he](#page-14-0) [e](#page-16-0)[x](#page-14-0)[pe](#page-15-0)[r](#page-16-0)[i](#page-12-0)[m](#page-13-0)[e](#page-15-0)[n](#page-16-0)[t](#page-12-0)

First gyro setup and its performance

 Ω_2 tuned around $\mathcal{F}=1 \rightarrow \mathcal{F}'=1,2$

 \leftarrow \Box \mathbf{p}_i \rightarrow \pm \rightarrow

4 D.K.

First gyro setup and its performance

E. Mikhailov, *et al.* Optical Engineering, Issue 10, 53, 102709, (2014)

 Ω

 \mathcal{A}

≡⇒

 298

 \mathbf{p}

イロトメ 倒 トメ ミトメ 毛

Gyro setup and lasing beat-note

 299

K ロ ト K 伊 ト K

≡⇒

Gyro setup and lasing beat-note

4 0 8

D

Gyro pulling - response to cavity length change

Pulling drastically improved by mainly two factors

- \bullet Higher finesse 20 \rightarrow 70
- • Higher pumping powers

Higher pulling happens at D_2 detuning where lasing tends to stop

Irina Novikova, Matt T. Simons, Joshua Hill, Hunter Rew (WM), Dmitry Budker, Simon Rochester (Rochester [Sci](#page-21-0)[en](#page-23-0)[ti](#page-21-0)[fic](#page-22-0)[\)](#page-23-0)[.](#page-21-0)

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 20 / 21

Summary

- We demonstrated feasibility of fast laser
- Our laser has pulling factor exceeding 1
- We are working on the laser stabilization to demonstrate rotation sensitivity

Eugeniy E. Mikhailov (W&M) [Towards fast gyroscope](#page-0-0) SPIE, 2015 21 / 21