Quantum enhanced measurements

Eugeniy E. Mikhailov

The College of William & Mary

WM, Febraury 18, 2014

A B > 4 B

People

Eugeniy E. Mikhailov (W&M)

From ray optics to semiclassical optics

Classical/Geometrical optics

- light is a ray
- which propagates straight
- cannot explain diffraction and interference

I > <
I >
I

A B F A B F

From ray optics to semiclassical optics

Classical/Geometrical optics

- light is a ray
- which propagates straight
- cannot explain diffraction and interference
- Semiclassical optics
 - light is a wave
 - color (wavelength/frequency) is important
 - amplitude (a) and phase are important, E(t) = ae^{i(kz-ωt)}
 - cannot explain residual measurements noise

Detector quantum noise

Simple photodetector

Detector quantum noise

Simple photodetector

Balanced photodetector

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Eugeniy E. Mikhailov (W&M)

Squeezed light

 $E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$ Detectors sense the real part of the field (X₁) but there is a way to see X_2 as well

Eugeniy E. Mikhailov (W&M)

э

3

3

3

3

э

э

э

(4) (2) (4) (2) (4)

I > <
I >
I

э

э

3

3

3

3

э

э

Classical quadratures vs time in a rotating frame

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 9 / 43

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 10 / 43

Transition from classical to quantum field

Classical analog

- Field amplitude a
- Field real part $X_1 = (a^* + a)/2$
- Field imaginary part $X_2 = i(a^* a)/2$

Quantum approach

- Field operator â
- Amplitude quadrature $\hat{X_1} = (\hat{a}^\dagger + \hat{a})/2$
- Phase quadrature $\hat{\chi_2} = i(\hat{a}^{\dagger} \hat{a})/2$

11/43

Light consist of photons • $\hat{N} = a^{\dagger} a$ Commutator relationship • $[a, a^{\dagger}] = 1$ • $[X_1, X_2] = i/2$ Detectors measure number of photons N • Quadratures \hat{X}_1 and \hat{X}_2 Uncertainty relationship • $\Delta X_1 \Delta X_2 > 1/4$

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N \geq 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N \geq 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Optics equivalent strict definition

$\Delta X_1 \Delta X_2 = 1/4$

Eugeniy E. Mikhailov (W&M)

WM, Febraury 18, 2014 14/43

 $\Delta X_1 \Delta X_2 = 1/4$

Eugeniy E. Mikhailov (W&M)

WM, Febraury 18, 2014 15/43

 $\Delta X_1 \Delta X_2 = 1/4$

Eugeniy E. Mikhailov (W&M)

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

Eugeniy E. Mikhailov (W&M)

→ ∃ > < ∃</p>

< 17 ▶

Eugeniy E. Mikhailov (W&M)

3 1 4 3

Take a vacuum state |0>

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 17 ▶

×°

Take a vacuum state |0>

Apply squeezing operator $|\xi > = \hat{S}(\xi)|0 >$

Χ,

∃ ⊳

Eugeniy E. Mikhailov (W&M)

Squeezed state $|\xi>=\hat{S}(\xi)|0>$ properties

$$\begin{split} \hat{S}(\xi) &= e^{\frac{1}{2}\xi^* a^2 - \frac{1}{2}\xi a^{\dagger 2}}, \xi = r e^{i\theta} \\ \text{If } \theta &= 0 \\ &< \xi |(\Delta X_1)^2|\xi > = \frac{1}{4} e^{-2r} \\ &< \xi |(\Delta X_2)^2|\xi > = \frac{1}{4} e^{2r} \end{split}$$

$$<\xi|(\Delta X_1)^2|\xi> = \frac{1}{4}(\cosh^2 r + \sinh^2 r - 2\sinh r \cosh r \cos \theta)$$

$$<\xi|(\Delta X_2)^2|\xi> = \frac{1}{4}(\cosh^2 r + \sinh^2 r + 2\sinh r \cosh r \cos \theta)$$

Eugeniy E. Mikhailov (W&M)

э

イロト イポト イヨト イヨト

Photon number of squeezed state $|\xi>$

Probability to detect given number of photons $C = < n | \xi >$ for squeezed vacuum

even

$$C_{2m} = (-1) \frac{\sqrt{(2m)!}}{2^m m!} \frac{(e^{i\theta} \tanh r)^m}{\sqrt{\cosh r}}$$

odd

$$C_{2m+1} = 0$$

Average number of photons in general squeezed state

$$< \alpha, \xi | \boldsymbol{a}^{\dagger} \boldsymbol{a} | \alpha, \xi > = \alpha + \sinh^2 r$$

Tools for squeezing

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 21 / 43

Ξ.

イロト イロト イヨト イヨト

Tools for squeezing

æ

イロト イロト イヨト イヨト

Tools for squeezing

イロト イロト イヨト イヨト

E

Two photon squeezing picture

Squeezing operator

$$\hat{S}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}$$

Parametric down-conversion in crystal

$$\hat{H} = i\hbar\chi^{(2)}(a^2b^\dagger - a^{\dagger 2}b)$$

Squeezing

result of correlation of upper and lower sidebands

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 22 / 43

Eugeniy E. Mikhailov (W&M)

2

イロト イロト イヨト イヨト

Squeezer appearance

Eugeniy E. Mikhailov (W&M)

æ

<ロト < 回 > < 回 > < 回 > .

Squeezer appearance

Eugeniy E. Mikhailov (W&M)

- improvements any shot noise limited optical sensors
- noiseless signal amplification
- photon pair generation, entanglement, true single photon sources
- interferometers sensitivity boost (for example gravitational wave antennas)
- light free measurements
- quantum memory probe and information carrier

A B < A B </p>

Vacuum input

æ

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< A

Squeezing and interferometer

Vacuum input

Squeezed input

< A

э

Laser Interferometer Gravitational-wave Observatory

- L = 4 km
- $h \sim 2 \times 10^{-23}$
- $\Delta L \sim 10^{-20} \text{ m}$

Self-rotation of elliptical polarization in atomic medium

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + rac{igL}{2}(a^{\dagger}_{in} - a_{in})$$

Eugeniy E. Mikhailov (W&M)

Self-rotation of elliptical polarization in atomic medium

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + rac{igL}{2}(a^{\dagger}_{in} - a_{in})$$

Setup

Eugeniy E. Mikhailov (W&M)

Ξ.

イロト イロト イヨト イヨト

Noise contrast vs detuning in hot ⁸⁷Rb vacuum cell

Eugeniy E. Mikhailov (W&M)

Squeezed light

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

 $\exists \mapsto$

 87 Rb D₁ line

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 33 / 43

→ Ξ → < Ξ</p>

< 17 ▶

 87 Rb D₁ line

Eugeniy E. Mikhailov (W&M)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

 87 Rb D₁ line

Eugeniy E. Mikhailov (W&M)

 $\exists \mapsto$
Optical magnetometer based on Faraday effect

 87 Rb D₁ line

Eugeniy E. Mikhailov (W&M)

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 34 / 43

- L

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Shot noise limit of the magnetometer

3

イロト イポト イヨト イヨト

Squeezed enhanced magnetometer setup

Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 37 / 43

Magnetometer noise floor improvements

Noise suppression and response vs atomic density

Noise suppression (dB) 5 kHz 100 kHz 500 kHz 1 MHz -6^{-10} 10¹² 10¹¹ Atomic density (atoms/cm³) 0.25 Slope of rotation signal (V/µT) 0.2 formalized transmission 0.15 0.1 0.05 Þ -<mark>12</mark>75 1010 10¹¹ Atomic density (atoms/cm3)

Noise suppression

Response

Magnetometer with squeezing enhancement

Eugeniy E. Mikhailov (W&M)

Squeezed light

WM, Febraury 18, 2014 41 / 43

- Squeezing is exciting
- many applications benefit from squeezing
- there is still a lot of interesting physics to do

3 > 4 3

< A.