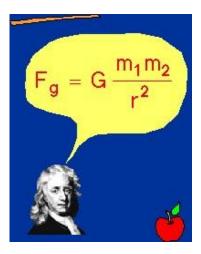
Quantum enhanced measurements and LIGO

Eugeniy E. Mikhailov

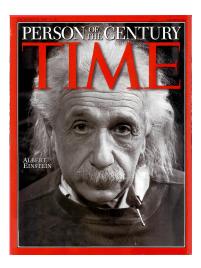
The College of William & Mary


July 25, 2014

Outline

- History of gravity
 - Newton's laws
 - Einstein's laws
 - A bit of astrophysics
- 2 Detectors
 - Gravitational wave interferometer
- Assorted LIGO pictures
- Quantum optics
 - Classical field
 - Quantum field
- Squeezing applications
 - Squeezing and interferometers
 - Squeezing enhanced magnetometry

Newton's laws 1687

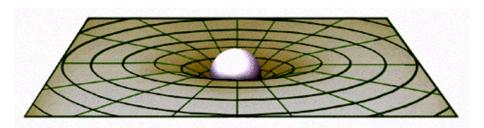

Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Did not explained precession of Mercury orbit

Einstein's laws 1916

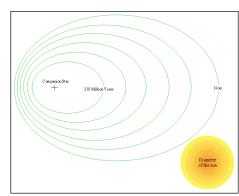


The General Theory of Relativity and theory of Gravity (1916)

- No absolute motion thus only relative motion
- Space and time are not separate thus four dimensional space-time
- Gravity is not a force acting at a distance thus warpage of space-time

General relativity

- A geometric theory connecting matter to spacetime
- Matter tells spacetime how to curve
- Spacetime tells matter how to move


important predictions

- \bullet Light path bends in vicinity of massive object \rightarrow confirmed in 1919
- Gravitational radiation (waves) → confirmed indirectly in 1974

Indirect observation of gravitational wave

Emission of gravitational radiation from pulsar PSR1913+16 leads to loss of orbital energy

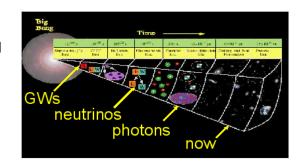
- orbital period decreased by 14 sec from 1975 to 1994
- measured to 50 msec accuracy
- deviation grows quadratically with time

Nobel prize in 1997 Taylor and Hulse

Astrophysical sources of GW

- Coalescing compact binaries
 - objects: NS-NS, BH-NS, BH-BH
 - physics regimes: Inspiral, merger, ringdown

- Periodic sources
 - spinning neutron stars (pulsars)

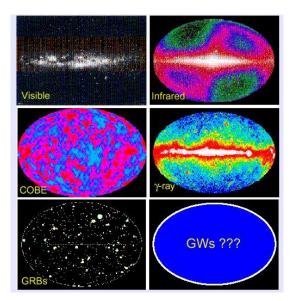


Astrophysical sources of GW (cont)

- Burst events
 - Supernovae with asymmetric collapse

- Stochastic background
 - right after Big Bang (t = 10⁻⁴³ sec)
 - continuum of sources

Astrophysics with GWs vs. E&M

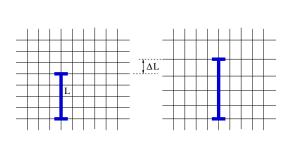

E&M (photons)

- Space as medium for field
- Accelerating charge
- Absorbed, scattered, dispersed by matter
- 10 MHz and up
- Light = not dark (but >95% of Universe is dark)

GW

- Spacetime itself ripples
- Accelerating aspherical mass
- Very small interaction; matter is transparent
- 10 kHz and down
- Radiated by dark mass distributions

New view to the universe

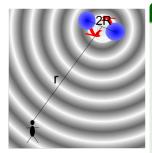


Gravitational waves (GW)

- Predicted by the General Theory of Relativity
- Generated by aspherical mass distribution
- Induce space-time ripples which propagate with speed of light

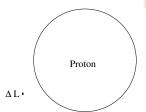
New tool for astrophysics

GW stretch and squeeze space-time thus move freely floating objects

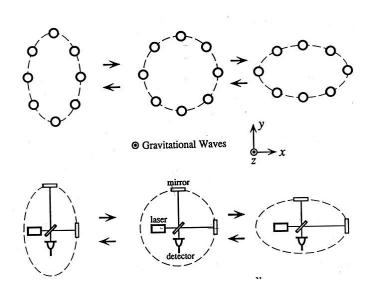

Strain - strength of GW

$$h = \frac{\Delta L}{L} \tag{1}$$

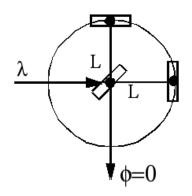
typical strain

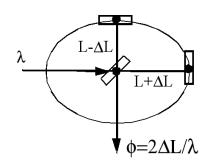

 $h \sim 10^{-21}$

Typical strain


Two neutron star

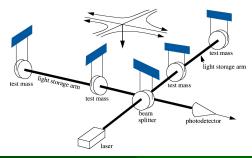
with a mass of 1.4 solar masses each orbiting each other with a frequency $f=400~{\rm Hz}$ at a distance $2R=20~{\rm km}$ would generate strain $h\sim 10^{-21}$ at distance equal to $10^{23}~{\rm m}$ (distance to the Virgo cluster) For 4 km base line that would correspond to ΔL thousand times smaller than size of proton.



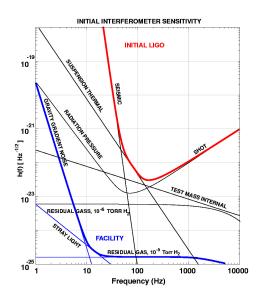

Detection of GW is difficult problem

GW acting on matter

Interferometric Measurement



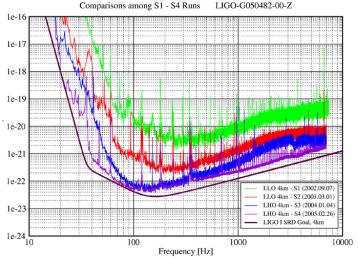
Laser Interferometer Gravitational-wave Observatory



- *L* = 4 km
- $h \sim 10^{-21}$
- $\bullet \ \Delta L \sim 10^{-18} \ m$
- ullet $\Delta\phi\sim 10^{-10}~{
 m rad}$

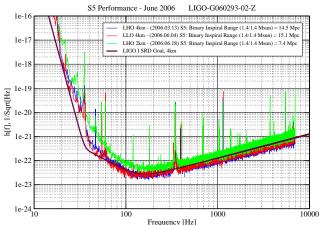
LIGO sensitivity goal and noise budget

Displacement noise


- seismic
- thermal suspension
- thermal Brownian
- radiation pressure noise

Detection noise

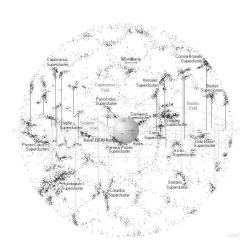
- electronics
- shot noise


LIGO sensitivity, S1-S4 runs

Best Strain Sensitivities for the LIGO Interferometers

LIGO sensitivity, S5 run, June 2006

Strain Sensitivity for the LIGO Interferometers


Upgrade

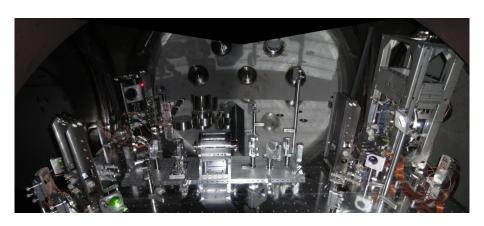
Goals

- Factor of 15 increase in sensitivity
- inspiral range from 20 Mpc to 350 Mpc
- Factor of 3000 in event rate
 One day > entire 2-year initial
 data run
- Quantum-noise-limited interferometer

How

- better seismic isolation
- decreasing thermal noise
- higher laser power

Seismic isolation


Part of large system

Work in chamber

Inside vacuum chamber

Mirror

Inner test mass

Squeezer optical table

We all hope to catch GW but ...

World wide network of detectors

Additional links

www.ligo.org

You can help to detect a gravitational wave

www.einsteinathome.org

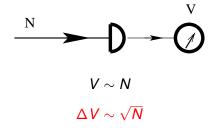
From ray optics to semiclassical optics

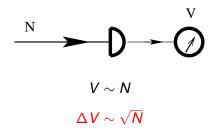
Classical/Geometrical optics

- light is a ray
- which propagates straight
- cannot explain diffraction and interference

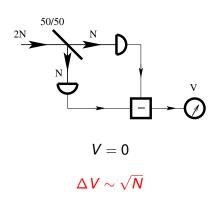
From ray optics to semiclassical optics

Classical/Geometrical optics


- light is a ray
- which propagates straight
- cannot explain diffraction and interference
 Semiclassical optics
 - light is a wave
 - color (wavelength/frequency) is important
 - amplitude (a) and phase are important, E(t) = ae^{i(kz-ωt)}
 - cannot explain residual measurements noise

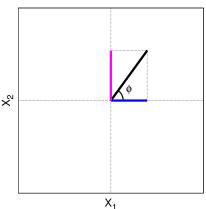

Detector quantum noise

Simple photodetector

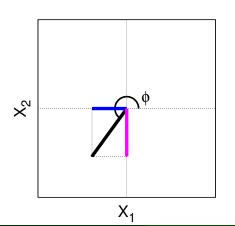


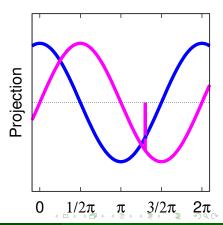
Detector quantum noise

Simple photodetector

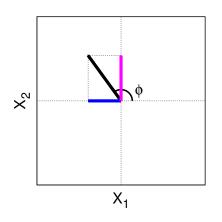

Balanced photodetector

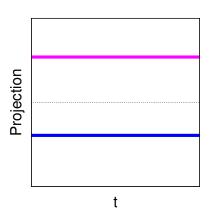
Classical field


$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$


Detectors sense the real part of the field (X_1) but there is a way to see X_2 as well

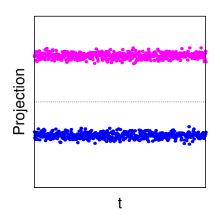
Classical field


$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$



Classical quadratures vs time in a rotating frame

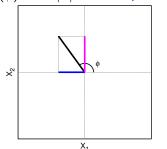
$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$



Reality check quadratures vs time

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

Transition from classical to quantum field

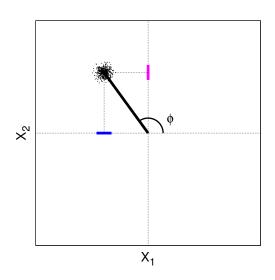

Classical analog

- Field amplitude a
- Field real part

$$X_1=(a^*+a)/2$$

• Field imaginary part $X_2 = i(a^* - a)/2$

$$E(\phi) = |a|e^{-i\phi} = X_1 + iX_2$$



Quantum approach

- Field operator â
- Amplitude quadrature $\hat{X}_1 = (\hat{a}^{\dagger} + \hat{a})/2$
- Phase quadrature $\hat{\chi}_2 = i(\hat{a}^{\dagger} \hat{a})/2$

$$\hat{E}(\phi) = \hat{X}_1 + i\hat{X}_2$$

Quantum optics summary

Light consist of photons

•
$$\hat{N} = a^{\dagger}a$$

Commutator relationship

•
$$[a, a^{\dagger}] = 1$$

•
$$[X_1, X_2] = i/2$$

Detectors measure

- number of photons N
- Quadratures $\hat{X_1}$ and $\hat{X_2}$

Uncertainty relationship

$$\Delta X_1 \Delta X_2 \ge 1/4$$

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N > 1$

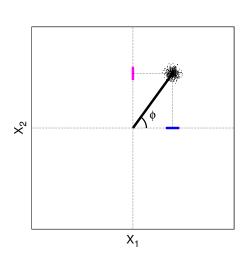
The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

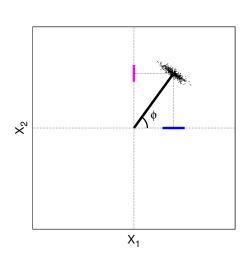
 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa


Optics equivalent

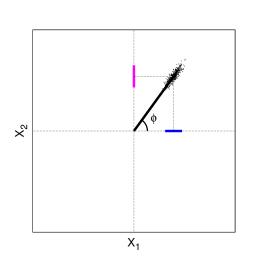
 $\Delta \phi \Delta N > 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

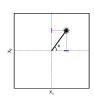

Optics equivalent strict definition

 $\Delta X_1 \Delta X_2 \ge 1/4$

Unsqueezed coherent

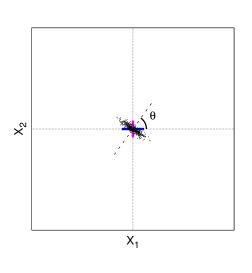


Unsqueezed coherent



Amplitude squeezed

Unsqueezed coherent

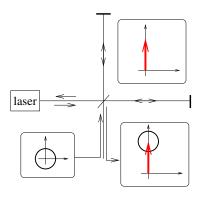

Amplitude squeezed

Phase squeezed

Unsqueezed coherent

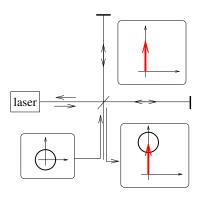
Phase squeezed

Vacuum squeezed

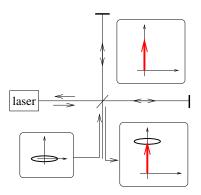


Possible squeezing applications

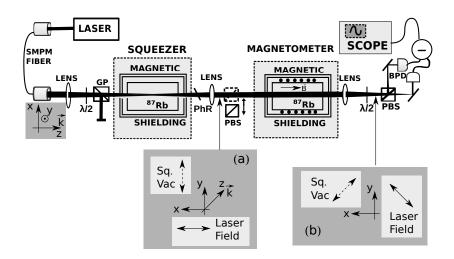
- improvements any shot noise limited optical sensors
- noiseless signal amplification
- photon pair generation, entanglement, true single photon sources
- interferometers sensitivity boost (for example gravitational wave antennas)
- light free measurements
- quantum memory probe and information carrier


Squeezing and interferometer

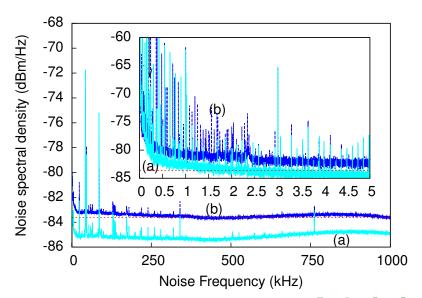
Vacuum input



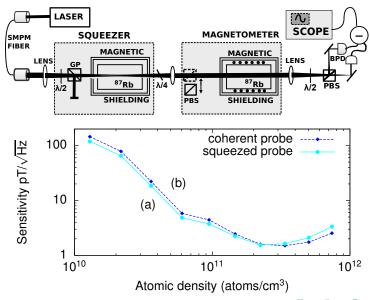
Squeezing and interferometer


Vacuum input

Squeezed input



Squeezed enhanced magnetometer setup



Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Magnetometer noise floor improvements

Magnetometer with squeezing enhancement

Summary

• The future is in quantum noise suppression :)