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Laser Interferometer Gravitational-wave Observatory

L = 4 km
h ∼ 2 × 10−23

∆L ∼ 10−20 m
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LIGO sensitivity, S5 run, June 2006
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LHO 4km - (2006.03.13) S5: Binary Inspiral Range (1.4/1.4 Msun) = 14.5 Mpc
LLO 4km - (2006.06.04) S5: Binary Inspiral Range (1.4/1.4 Msun) = 15.1 Mpc
LHO 2km - (2006.06.18) S5: Binary Inspiral Range (1.4/1.4 Msun) = 7.4 Mpc
LIGO I SRD Goal, 4km

Strain Sensitivity for the LIGO Interferometers
S5 Performance - June 2006       LIGO-G060293-02-Z

Inspiral search range during S5 is 14Mpc
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Upgrade to advanced LIGO

Goals
Factor of 15 increase in
sensitivity
inspiral range from 20 Mpc to
350 Mpc
Factor of 3000 in event rate
One day > entire 2-year initial
data run

How
better seismic isolation
decreasing thermal noise
higher laser power
injection of squeezed state
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Squeezed quantum states zoo
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Squeezing and interferometer

Vacuum input

laser

Squeezed input

laser
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Limiting noise - Quantum Optical noise

Next generation of LIGO will be
quantum optical noise limited at almost all detection frequencies.

shot noise
Uncertainty in number of
photons

h ∼
√

1
P

(1)

radiation pressure noise
Photons impart momentum to
mirrors

h ∼
√

P
M2f 4 (2)

There is no optimal light power to suit all detection frequency.
Optimal power depends on desired detection frequency.
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Interferometer sensitivity improvement with squeezing

Projected advanced LIGO sensitivity

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)
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Squeezing and detection noise quadratures
X

2

X
1

θ

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8

 2  4  6  8  10  12

N
oi

se
 (

dB
)

Quadrature angle (Arb.Units)

Noise vs quadrature angle

Eugeniy E. Mikhailov (W&M) Sensitivity boost with light-atom interaction New Laser Scientists, 2014 18 / 28



Electromagnetically Induced Transparency (EIT) filter
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Squeezing and EIT filter
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Squeezing and EIT filter setup
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Squeezing and EIT filter setup
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EIT filter and measurements without light
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Wide EIT filter and squeezing
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Narrow EIT filter and squeezing
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Squeezing angle rotation
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Summary

It is possible to boost sensitivity of gravitational wave antennas via
light-atom interaction.
Proposed work

narrow EIT resonance/filter
maintain high transmission
match squeezing filter to LIGO λ = 1064 nm

find atomic media which is resonant to 1064 nm
use existing methods to up convert atom-filtered squeezing
λ from 795 nm to 1064 nm
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