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Transition from classical to quantum field

Classical analog
Field amplitude a
Field real part
X1 = (a∗ + a)/2
Field imaginary part
X2 = i(a∗ − a)/2

E(φ) = |a|e−iφ = X1 + iX2

X
2

X
1

φ

Quantum approach
Field operator â
Amplitude quadrature
X̂1 = (â† + â)/2
Phase quadrature
X̂2 = i(â† − â)/2

Ê(φ) = X̂1 + i X̂2

X
2

X
1

φ
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Heisenberg uncertainty principle and its optics
equivalent

Heisenberg uncertainty principle
∆p∆x ≥ ~/2
The more precisely the POSITION is determined,
the less precisely the MOMENTUM is known,
and vice versa

Optics equivalent
∆φ∆N ≥ 1
The more precisely the PHASE is determined,
the less precisely the AMPLITUDE is known, and
vice versa

Optics equivalent strict definition
∆X1∆X2 ≥ 1/4
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Squeezed quantum states zoo
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Self-rotation of elliptical polarization in atomic medium

SR

∆

Ω+ Ω-

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of
4-6 dB noise suppression

aout = ain +
igL
2

(a†in − ain) (1)
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Simplified setup

PBSPBS
RB87

LOV.Sq
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Setup
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Noise contrast vs detuning in hot 87Rb vacuum cell

Fg = 2→ Fe = 1,2
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Fg = 1→ Fe = 1,2
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Atomic low frequency squeezing source
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Squeezing and self-focusing
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Vacuum cell vs coated cell

Vacuum cell
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Squeezing theory and experiment

87Rb cell
no buffer gas
density 2 · 1011 cm−3

laser power 6 mW
beam size 0.2 mm

E.E. Mikhailov, A. Lezama, T. Noel and I. Novikova,
J. Mod. Opt. 56, 1985 (2009).

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 15 / 50



Theoretical prediction for MOT squeezing with 87Rb

Fg = 2→ Fe = 1,2 high optical density is very important
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MOT squeezer

Cloud size =1 mm, T = 200 µK, N = 7× 109 1/cm3,
OD = 2, beam size = 0.1 mm, 105 interacting atoms

PBSPBS

V.Sq LO
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Noise contrast in MOT with 87Rb Fg = 2→ Fe = 1
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Squeezing in MOT with 87Rb Fg = 2→ Fe = 1
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Travis Horrom, et al. Journal of Modern Optics, Issues 21, 58,
1936-1941, (2011).
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Optical magnetometer based on Faraday effect
87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′

χ′

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 20 / 50



Optical magnetometer based on Faraday effect
87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)
χ′′(−∆)
χ′(+∆)
χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 20 / 50



Optical magnetometer based on Faraday effect
87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)
χ′′(−∆)
χ′(+∆)
χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 20 / 50



Optical magnetometer based on Faraday effect
87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)
χ′′(−∆)
χ′(+∆)
χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 20 / 50



Optical magnetometer based on Faraday effect
87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)
χ′′(−∆)
χ′(+∆)
χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 20 / 50



Optical magnetometer based on Faraday effect
87Rb D1 line

F=1

F=2

F'=1

F'=2

m=0

m'=0

m=1

m=-1

-+

Susceptibility vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

detuning

χ′′(+∆)
χ′′(−∆)
χ′(+∆)
χ′(−∆)

Polarization rotation vs B

-1

-0.5

0

0.5

1

-10 -5 0 5 10

B field

∆χ′

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 20 / 50



Optical magnetometer and non linear Faraday effect

Naive model of rotation
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Magnetometer response vs atomic density
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Shot noise limit of the magnetometer

Rb Cell Rb Cell
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Squeezed enhanced magnetometer setup

Rb Cell Rb Cell
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Note: Squeezed enhanced magnetometer was first demonstrated by
Wolfgramm et. al Phys. Rev. Lett, 105, 053601, 2010.
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Magnetometer noise floor improvements
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Magnetometer noise spectra
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Noise suppression and response vs atomic density

Noise suppression
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Magnetometer with squeezing enhancement
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T. Horrom, et al. “Quantum Enhanced Magnetometer with Low
Frequency Squeezing”, PRA, 86, 023803, (2012).
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Laser Interferometer Gravitational-wave Observatory

L = 4 km
h ∼ 2× 10−23

∆L ∼ 10−20 m
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World wide network of detectors
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LIGO sensitivity goal and noise budget

Displacement noise
seismic
thermal suspension
thermal Brownian
radiation pressure
noise

Detection noise
electronics
shot noise
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LIGO sensitivity, S1-S4 runs

Inspiral search range during S4 was 8Mpc
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LIGO sensitivity, S5 run, June 2006
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Strain Sensitivity for the LIGO Interferometers
S5 Performance - June 2006       LIGO-G060293-02-Z

Inspiral search range during S5 is 14Mpc
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Upgrade

Goals
Factor of 15 increase in
sensitivity
inspiral range from 20 Mpc to
350 Mpc
Factor of 3000 in event rate
One day > entire 2-year initial
data run
Quantum-noise-limited
interferometer

How
better seismic isolation
decreasing thermal noise
higher laser power
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Quantum limited interferometers

Vacuum input

laser

Squeezed input

laser
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GW 40m detector with 4dB of squeezed vacuum

Signal to noise improvement by factor of 1.43
“A quantum-enhanced prototype gravitational-wave detector”,
Nature Physics, 4, 472-476, (2008).

Eugeniy E. Mikhailov (W&M) Squeezed light August 13, 2013 39 / 50



Limiting noise - Quantum Optical noise

Next generation of LIGO (advanced LIGO) will be
quantum optical noise limited at almost all detection frequencies.

shot noise
Uncertainty in number of
photons

h ∼
√

1
P

(2)

radiation pressure noise
Photons impart momentum to
mirrors

h ∼
√

P
M2f 4 (3)

There is no optimal light power to suit all detection frequency.
Optimal power depends on desired detection frequency.
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Interferometer sensitivity improvement with squeezing

Projected advanced LIGO sensitivity

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)
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EIT filter
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Squeezing and EIT filter
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Squeezing and EIT filter setup
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EIT filter and measurements without light
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Wide EIT filter and squeezing
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Narrow EIT filter and squeezing
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Narrower filter with control on/off

T=35◦C, no control
transmission 42%
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Squeezing angle rotation
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Summary

We demonstrate fully atomic squeezed enhanced magnetometer
Magnetometer noise floor lowered in the range from several kHz
to several MHz
Demonstrated sensitivity as low as 1 pT/

√
Hz in our particular

setup
Demonstration of amplitude squeezing filter with atoms

For more details:

T. Horrom, et al. “Quantum Enhanced Magnetometer with Low
Frequency Squeezing”, PRA, 86, 023803, (2012).
T. Horrom, et al. “All-atomic generation and noise-quadrature
filtering of squeezed vacuum in hot Rb vapor”, Journal of Physics
B: Atomic, Molecular and Optical Physics, Issue 12, 45, 124015,
(2012).
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