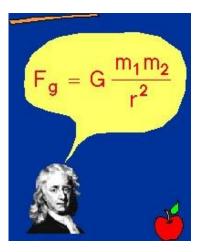
LIGO: Laser Detection of Ripples in Space

Eugeniy E. Mikhailov

The College of William & Mary

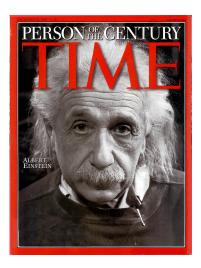


May 25, 2013

Outline

- History of gravity
 - Newton's laws
 - Einstein's laws
 - A bit of astrophysics
- 2 Detectors
 - Gravitational wave interferometer
- Assorted LIGO pictures
- 4 other detectors
- Extra information

Newton's laws 1687

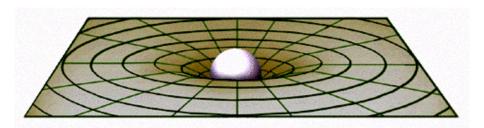

Laws of motion and law of gravitation solved problems of astronomy and terrestrial physics.

- eccentric orbits
- tides
- perturbation of moon orbit due to sun

Unified the work of Galileo, Copernicus and Kepler.

Did not explained precession of Mercury orbit

Einstein's laws 1915

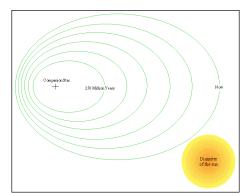


The General Theory of Relativity and theory of Gravity (1916)

- No absolute motion thus only relative motion
- Space and time are not separate thus four dimensional space-time
- Gravity is not a force acting at a distance thus warpage of space-time

General relativity

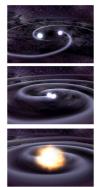
- A geometric theory connecting matter to spacetime
- Matter tells spacetime how to curve
- Spacetime tells matter how to move


important predictions

- \bullet Light path bends in vicinity of massive object \rightarrow confirmed in 1919
- Gravitational radiation (waves) → confirmed indirectly in 1974

Indirect observation of gravitational wave

Emission of gravitational radiation from pulsar PSR1913+16 leads to loss of orbital energy

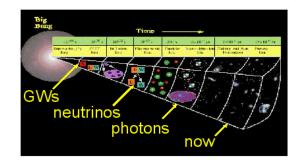

- orbital period decreased by 14 sec from 1975 to 1994
- measured to 50 msec accuracy
- deviation grows quadratically with time

Nobel prize in 1997 Taylor and Hulse

Astrophysical sources of GW

- Coalescing compact binaries
 - objects: NS-NS, BH-NS, BH-BH
 - physics regimes: Inspiral, merger, ringdown

- Periodic sources
 - spinning neutron stars (pulsars)

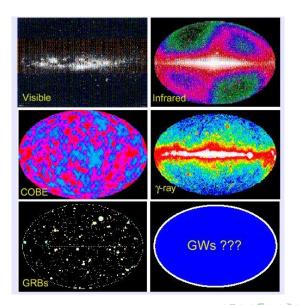


Astrophysical sources of GW (cont)

- Burst events
 - Supernovae with asymmetric collapse

- Stochastic background
 - right after Big Bang (t = 10⁻⁴³ sec)
 - continuum of sources

Astrophysics with GWs vs. E&M

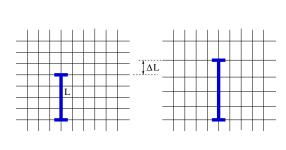

E&M (photons)

- Space as medium for field
- Accelerating charge
- Absorbed, scattered, dispersed by matter
- 10 MHz and up
- Light = not dark (but >95% of Universe is dark)

GW

- Spacetime itself ripples
- Accelerating aspherical mass
- Very small interaction; matter is transparent
- 10 kHz and down
- Radiated by dark mass distributions

New view to the universe



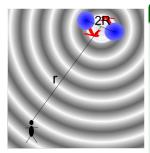
Gravitational waves (GW)

- Predicted by the General Theory of Relativity
- Generated by aspherical mass distribution
- Induce space-time ripples which propagate with speed of light

New tool for astrophysics

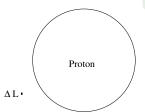
GW stretch and squeeze space-time thus move freely floating objects

Strain - strength of GW

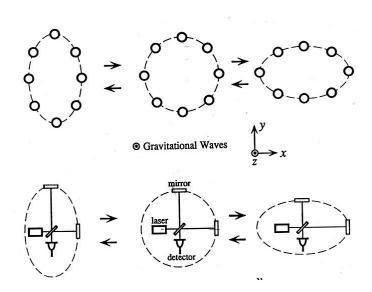

$$h = \frac{\Delta L}{L} \tag{1}$$

typical strain

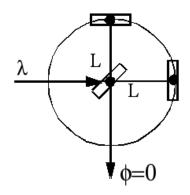
 $h \sim 10^{-21}$

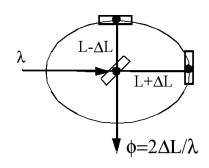

(2)

Typical strain


Two neutron star

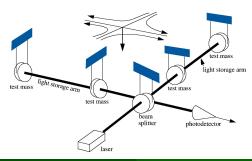
with a mass of 1.4 solar masses each orbiting each other with a frequency $f=400~{\rm Hz}$ at a distance $2R=20~{\rm km}$ would generate strain $h\sim 10^{-21}$ at distance equal to $10^{23}~{\rm m}$ (distance to the Virgo cluster) For 4 km base line that would correspond to ΔL thousand times smaller than size of proton.



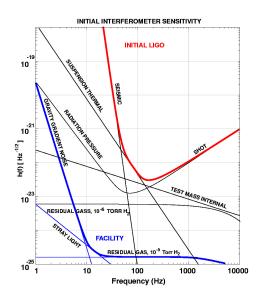

Detection of GW is difficult problem

GW acting on matter

Interferometric Measurement



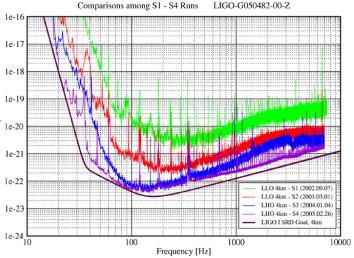
Laser Interferometer Gravitational-wave Observatory



- *L* = 4 km
- $h \sim 10^{-21}$
- $\bullet \ \Delta L \sim 10^{-18} \ m$
- $\bullet~\Delta\phi\sim$ $10^{-10}~\text{rad}$

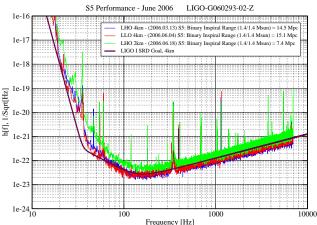
LIGO sensitivity goal and noise budget

Displacement noise


- seismic
- thermal suspension
- thermal Brownian
- radiation pressure noise

Detection noise

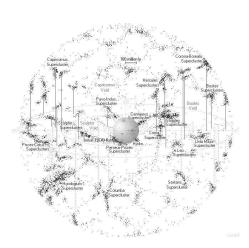
- electronics
- shot noise


LIGO sensitivity, S1-S4 runs

Best Strain Sensitivities for the LIGO Interferometers

LIGO sensitivity, S5 run, June 2006

Strain Sensitivity for the LIGO Interferometers


Upgrade

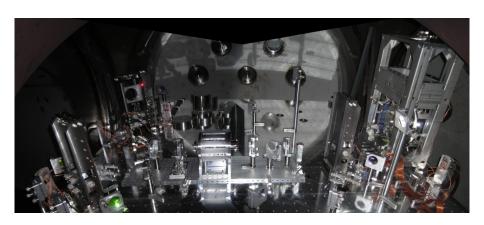
Goals

- Factor of 15 increase in sensitivity
- inspiral range from 20 Mpc to 350 Mpc
- Factor of 3000 in event rate
 One day > entire 2-year initial
 data run
- Quantum-noise-limited interferometer

How

- better seismic isolation
- decreasing thermal noise
- higher laser power

Seismic isolation


Part of large system

Work in chamber

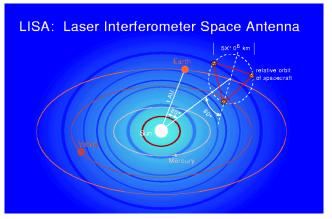
Inside vacuum chamber

Mirror

Inner test mass

Squeezer optical table

Near by wild life



World wide network of detectors

Laser Interferometer Space Antenna (LISA)

- Three spacecraft in triangular formation
- separated by 5 million km
- Formation trails Earth by 20°

Additional links

www.ligo.org

You can help to detect a gravitational wave

www.einsteinathome.org

