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From ray optics to semiclassical optics

Classical/Geometrical optics
@ lightis aray
@ which propagates straight

@ cannot explain diffraction and
interference
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From ray optics to semiclassical optics

Classical/Geometrical optics
@ lightis aray
@ which propagates straight

@ cannot explain diffraction and
interference

Semiclassical optics

@ light is a wave

@ color (wavelength/frequency) is
important

@ amplitude (a) and phase are
important, E(t) = ae/(k2—«1)

@ cannot explain residual
measurements noise
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Classical field

E(6) = lale™™ = |a|cos(d) + ilalsin(0) = Xi +iXe, ¢ =wt—kz

Detectors sense the real part of the field (Xi) but there is a way to see
X as well

Xa

X4
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Classical field

E(¢) = |ale™™® = |alcos(p) +ilasin(¢) = Xy + iXo, ¢ =wt—kz
S
=3 - gi / /
o

X4 0 12 = 312nm 2=
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Classical field

E(¢) = |ale™'® = |a|cos(¢)+i|a|sin(¢) = Xy + iXo, ¢ =wt—kz
S
o A0 g /
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Classical quadratures vs time in a rotating frame

E(¢) = |ale™'® = |a|cos(¢)+i|a|sin(¢) = Xy + iXo, ¢ =wt—kz
5
2 N 5
B
a
X4 i
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Reality check quadratures vs time

E(6) = lale™™ = |a|cos(d) + ilalsin(0) = Xi +iXe, ¢ =wt—kz

Projection

X4
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Detector quantum noise

Simple photodetector

\%
=D -0
V~N
AV ~ /N
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Detector quantum noise

Simple photodetector Balanced photodetector
Vv 50/50
N 2N N
N
A%
V~N
AV ~ VN
V=0
AV ~ VN
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Transition from classical to quantum field

Classical analog Quantum approach

@ Field amplitude a @ Field operator a

@ Field real part @ Amplitude quadrature
X; :(a*+a)/2 Xi :(éT+é)/2

@ Field imaginary part @ Phase quadrature
Xo=i(a"—a)/2 Xo = i(ah — 8)/2

E(¢p) = l|ale7’® =X +iX; E(¢) = Xi+iX
o \¢ \¢

Xz
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Quantum optics summary

Light consist of photons

o N=ala
Commutator relationship

@ [a,a]=1

@ [Xi, Xo]=i/2
Detectors measure

@ number of photons N

@ Quadratures X; and X»
Uncertainty relationship

o AX{AX> > 1/4
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Heisenberg uncertainty principle and its optics
equivalent

Heisenberg uncertainty principle

ApAx > h/2
The more precisely the POSITION is determined,
the less precisely the MOMENTUM is known,

and vice versa

Fudan, December 24, 2013 13/70
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Heisenberg uncertainty principle and its optics
equivalent

| A\

Heisenberg uncertainty principle

ApAXx > h/2

The more precisely the POSITION is determined,
the less precisely the MOMENTUM is known,
and vice versa

Optics equivalent

APAN > 1

The more precisely the PHASE is determined,
the less precisely the AMPLITUDE is known, and
vice versa

v
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Heisenberg uncertainty principle and its optics
equivalent

| AGAN > 1

Heisenberg uncertainty principle

ApAXx > h/2

The more precisely the POSITION is determined,
the less precisely the MOMENTUM is known,
and vice versa

| \

Optics equivalent

The more precisely the PHASE is determined,
the less precisely the AMPLITUDE is known, and
vice versa

Optics equivalent strict definition
AXiAXp > 1/4
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Coherent state is minimum uncertainty state

AXiAX> =1/4 J

X
Projection

X4 0 12 m® 32m 2=n
()
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Coherent state is minimum uncertainty state
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Coherent state is minimum uncertainty state

AXiAX> =1/4 J
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Coherent state is minimum uncertainty state
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Amplitude squeezed states

AXiAX> =1/4 J

X
Projection

X4 0 12 =m® 312 2=n
(]
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Amplitude squeezed states

AXiAX> =1/4 J
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Amplitude squeezed states
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Amplitude squeezed states

AXiAX> =1/4 J
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Amplitude squeezed states

AXiAX> =1/4 J

X4 0 12 m® 312 2=n
(]

2
oA
J
<
Projection

Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 15/70



Amplitude squeezed states

AXiAX> =1/4 J

X4 0 12 m® 312 2=n
(]

2
I
J
<
Projection

Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 15/70



Phase squeezed states

AXiAX> =1/4 J
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Phase squeezed states

AXiAX> =1/4 J

2
J
E=a
Projection

X4 0 12 m® 312 2=n
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Phase squeezed states

AXiAX> =1/4 J

S 3
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Phase squeezed states
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Phase squeezed states

AXiAX> =1/4 J

[y
.2
o el 8
X U .00_3,
a

X4 0 12 m 32rm 2%

¢
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Phase squeezed states
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2
D
J
o
Projection

X4 0 12 m® 312 2=n
(]

Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 16/70



Phase squeezed states
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Squeezed quantum states zoo

Unsqueezed
coherent
o
N
>< X
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Squeezed quantum states zoo

Unsqueezed Amplitude
coherent squeezed
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Squeezed quantum states zoo

Unsqueezed Amplitude

coherent squeezed
¢
N
>< - X4 %
Phase
squeezed
X, : $
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Squeezed quantum states zoo

Unsqueezed Amplitude

coherent squeezed
N
>< X4 =
Phase Vacuum
squeezed squeezed
X1 x * x \9
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Squeezed field generation recipe

Take a vacuum
state |0 >

X2
-
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Squeezed field generation recipe

Take a vacuum  Apply squeezing
state |0 > operator |£ >= 5(¢)|0 >

3(e) = o - bear

X2
-

X2
£

X4
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Squeezed field generation recipe

Take a vacuum  Apply squeezing Apply displacement
state [0 > operator [£ >= S(&)|0 > operator |a,{ >= D(a)|s >
5(¢) = et @ —z¢a" D(a) = gv@'—oa
< *
R < ™
1
H= 5 X .
<o,éXila,6 > = Re(a),
<o, §|Xela, > = Im(a)
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Squeezed field generation recipe

Take a vacuum  Apply squeezing Apply displacement
state [0 > operator [£ >= S(&)|0 > operator |a,{ >= D(a)|s >
5(¢) = et @ —z¢a" D(a) = gv@'—oa
< *
R < ™
1
H= 5 X .
<o,éXila,6 > = Re(a),
<o, §|Xela, > = Im(a)

Notice AXiAX; = §
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Squeezed state |¢ >= 5(¢)|0 > properties

8(6) = ebe Fica ¢ _ gt
fo=0

Xz

<E(aX)PE> = %e*”

< E[(AX)?)E > %ezr

X4

< E[(AX)?[¢ >

1
Z(cosh2 r + sinh? r — 2sinh r cosh r cos )

1
< E(AXR)?lE > = Z(cosh2 r + sinh? r + 2 sinh r cosh r cos )
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Photon number of squeezed state |€ >

Probability to detect given number of
photons C =< n|¢ > for squeezed

vacuum
@ even
s? oo (_1)\/(2m)! (e’ tanh r)™
. \ oY 2mmb ooshr
x
@ odd
Comy1 =0
. Average number of photons in general
X, squeezed state

<o, €latala, & >= a+sinh?r
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Tools for squeezing
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Tools for squeezin
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Two photon squeezing picture

Squeezing operator

Parametric down-conversion in
crystal
,,,,,,,,, y ' H = iny®(22b' — a?b)
»b

Squeezing
result of correlation of upper and lower sidebands
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Squeezer appearance
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ueezer appearance

N
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Squeezer appearance
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Possible squeezing applications

improvements any shot noise limited optical sensors
noiseless signal amplification
photon pair generation, entanglement, true single photon sources

interferometers sensitivity boost (for example gravitational wave
antennas)

light free measurements
quantum memory probe and information carrier

Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 25/70



Squeezing and interferometer
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Squeezing and interferometer

Vacuum input

- |
laser ——= |
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Squeezing and interferometer

Vacuum input Squeezed input

laser = | laser = |

<HT
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Laser Interferometer Gravitational-wave Observatory

test mass

@ L=4km
° h ~ 2 X 10723 test mass ]igh"")rag

€ army
[*] AL ~ 10_20 m test mass

light storage arm

photodetector
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Squeezing level vs time (unlocked)

Squeezing-Enhanced SAMI at 4MHz with Squasze Angls Scanned
T T T
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i
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Time

“A quantum-enhanced prototype gravitational-wave detector”,
Nature Physics, 4, 472-476, (2008).
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GW 40m detector and squeezer

(I) Pre-Stabilized Laser (Iil) Interferometer
PBS PD2

P‘D3 ReCfergtnce _E". =S Gravity
avity b_"lETMY Wave

D S INH--- Q Circulator

Flipper Eaed
Mirror ¢
Homdyne 6 (V) Length
(iV) Squeezer Detector Sensing Detector
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GW 40m detector with 4dB of squeezed vacuum

Strain (m/Hz” 2)

10
Frequency (Hz)

Signal to noise improvement by factor of 1.43
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Fudan, December 24, 2013 31/70



Cavity parameters with squeezing

A

Y
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Cavity parameters with squeezing

A

A

Quadrature Variance w.r.t. Shot Noise (dB)

6 8 Igr(()equency (M}Jlg) " 16
“Noninvasive measurements of cavity parameters by use of squeezed

vacuum”, Physical Review A, 74, 033817, (2006).
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Summary for crystal squeezing

Pros
@ mainstream: many different nonlinear crystals available

@ so far the best squeezers

@ maximum squeezing value detected 11.5 dB at 1064 nm

e Moritz Mehmet, Henning Vahlbruch, Nico Lastzka, Karsten
Danzmann, and Roman Schnabel, “Observation of squeezed
states with strong photon-number oscillations”, Phys. Rev. A 81,
013814 (2010)

@ well understood
Cons
@ crystals have limited transparency window

@ thus squeezing is hard to generate at visible wavelength
e at 795 nm only 4-6 dB squeezing is reported

@ this limits applications of such squeezers for spectroscopy
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Self-rotation of elliptical polarization in atomic medium

TPSR

Q, 0
AN Y

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of

4-6 dB noise suppression

igL
(

a = ajp+ —
out in D)
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Self-rotation of elliptical polarization in atomic medium

9 |d>

l+> ->
A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of
4-6 dB noise suppression
igL
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Setup
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Noise contrast vs detuning in hot 8’Rb vacuum cell

Fg:2—>Fe:172 Fg:1—>Fe:1,2
Noise vs detuning Noise vs detuning
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Squeezing region

Squeezing Anti-squeezing

Power, mW

02 104 138 108 11 M2 1M&  ME N8 I ERET VTR T 1 1z 14 115 118

Density x10* per cm3 Density xlollper cm3

Observation of reduction of quantum noise below the shot noise limit is
corrupted by the excess noise due to atomic interaction with atoms.
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Maximally squeezed spectrum with 8’Rb

W&M team. 8’Rb Fy = 2 — F, = 2, laser power 7 mW, T=65° C

14 F B L T 3
12 TR i \
0 T .
o 8 b _
ke
() 6 [ n
R
o T -
pzd
2 S S SO .
0

0 0.5 1 1.5 2
Frequency (MHz)

Lezama et.al report 3 dB squeezing in similar setup
Phys. Rev. A 84, 033851 (2011)
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Optical magnetometer based on Faraday effect

87Rb D4 line
Y
—_F'=
Y
F=1

Susc1:eptibility vs B

0.5
0F
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1 I
-10 5 0 5 10
detuning
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Optical magnetometer based on Faraday effect
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Optical magnetometer based on Faraday effect

87Rb D4 line
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Optical magnetometer based on Faraday effect

87Rb D4 line
Y
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Y
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Susc1:eptibility vs B
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Optical magnetometer based on Faraday effect

87Rb D4 line
.
Y -,
F=1

Susc1:eptibility vs B

0.5 - B field
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Optical magnetometer and non linear Faraday effect

Naive model of rotation Experiment

1

0.5
0L
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1 . . 7
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B field
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Optical magnetometer and non linear Faraday effect

Naive model of rotation Experiment
005 2mwW
0
-0.05
008 6mW

Rotation response (V)
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Magnetometer response vs atomic density
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Shot noise limit of the magnetometer

.....

MAGNETIC

SHIELDING

S = |E+EP-|E-EP Ex&
S — 4EpEv ) EV
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Squeezed enhanced magnetometer setup

| —— |
LASER | Y ﬂ
! N I < X
SMPM SQUEEZER MAGNETOMETER | SCOPE —
FIBER MAGNETIC MAGNETIC
LENS b LENS LENS BP
=2 —>B
-l
X v w2 |L_®7rb | ||iphg |Z|I “Rb A2] PBS
k SHIELDING PBS SHIELDING
z
(@)
Sq. A
Vacy Y, Z- g4
Y Iﬂk Vac; 1
X
Laser II;Iaes;sr
Field

Note: Squeezed enhanced magnetometer was first demonstrated by
Wolfgramm et. al Phys. Rev. Lett, 105, 053601, 2010.
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Magnetometer noise floor improvements
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Magnetometer noise spectra
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Noise suppression and response vs atomic density

Noise suppression

Response
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Magnetometer with squeezing enhancement
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SMPM SQUEEZER MAGNETOMETER | SCOPE _
FIBER MAGNETIC MAGNETIC
LENSE o Sssess LENS BP
=21
A2 87Rb N4 'ZI 87Rb 2 255
SHIELDING PBS SHIELDING
T
N 100 N coherent probe ----e---- |
@ Y squeezed probe
~ N
o b
*
Z 1 . (@
-; 3 \‘\\ -
= (@
wn “nq
C ~.
o) X P
7, S U >
1 .
1010 1011 1012

Atomic density (atoms/cm?)

Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 49 /70



Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW =
3 MHz, RBW = 100 kHz

Md

(b) squeezed

MAGNETIC

Noise power (dB)

SHIELDING

v 0z 04 oe o8 1 12
Magnetic field (G)

Travis Horrom et al. "All-atomic source of squeezed vacuum with full

pulse-shape control", Journal of Physics B: Atomic, Molecular and

Optical Physics, Issue 12, 45, 124015, (2012).
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Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW =
3 MHz, RBW = 100 kHz
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Travis Horrom et al. "All-atomic source of squeezed vacuum with full
pulse-shape control", Journal of Physics B: Atomic, Molecular and
Optical Physics, Issue 12, 45, 124015, (2012).
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Time advancement setup
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Squeezing modulation and time advancement
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Squeezing modulation and time advancement
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Advancement vs power
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Advancement vs power
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Squeezing level before and after advancement cell
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Squeezing advancement vs atomic density
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Why superluminal squeezing?

@ Quantum memories

@ M. S. Shahriar, et al. “Ultrahigh enhancement in absolute and
relative rotation sensing using fast and slow light”, Phys. Rev. A
75(5), 053807, 2007.

@ Yakir Aharonoy, et al. “Quantum Limitations on Superluminal
Propagation”, Phys. Rev. Lett. 81, 2190 (1998)
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Squeezing and self-focusing

Gaussian beam Vortex beam
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Quantum limited interferometers revisited

Vacuum input Squeezed input

laser = | laser = |

<HT
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Limiting noise - Quantum Optical noise

Next generation of LIGO will be
quantum optical noise limited at almost all detection frequencies.
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Limiting noise - Quantum Optical noise

Next generation of LIGO will be
quantum optical noise limited at almost all detection frequencies.

Uncertainty in number of
photons
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Limiting noise - Quantum Optical noise

Next generation of LIGO will be
quantum optical noise limited at almost all detection frequencies.

radiation pressure noise

Photons impart momentum to
mirrors

Uncertainty in number of
photons

hoo | —— 2)
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Limiting noise - Quantum Optical noise

Next generation of LIGO will be
quantum optical noise limited at almost all detection frequencies.

radiation pressure noise

Uncertainty in number of
photons

Photons impart momentum to
mirrors

There is no optimal light power to suit all detection frequency.
Optimal power depends on desired detection frequency.
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Interferometer sensitivity improvement with squeezing

Projected advanced LIGO sensitivity

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)
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Squeezing and EIT filter

vourN AR AR Vi 2 | a2 1
( vout ) = (A2 )t ()

Fudan, December 24, 2013 61/70
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Squeezing and EIT filter
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Squeezing and EIT filter

vourN AR AR Vi 2 | a2 1
( vout ) = (A2 )t ()
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Squeezing and EIT filter setup

Squeezing EIT

Laser
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Squeezing and EIT filter setup
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EIT filter and measurements without light
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Wide EIT filter and squeezing

@ Peak transmission = 52%
o FWHM= 4MHz
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Narrow EIT filter and squeezing

@ Peak transmission = 50%
o FWHM= 2MHz
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Control off no EIT and no squeezing at the output

@ Peak transmission = 0%
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Squeezing angle rotation

Low control power
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Potential squeezing improvement with coated cells

Vacuum cell Coated cell
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Potential squeezing improvement with coated cells

Vacuum cell Coated cell

15

(a) antisqueezed

(b) squeezed

o

Noise power (dB)

Noise level (dB)

0 0.2 0. 0.8 1 1.2

4 0.6
Magnetic field (G) -2
20 -15 -10 5 0 5 10 15 20
Magnetic field (Arb. Units)

Eugeniy E. Mikhailov (W&M) Squeezed light

Fudan, December 24, 2013 68/70



@ We demonstrate fully atomic squeezed enhanced magnetometer
with sensitivity as low as 1 pT/vHz

@ First demonstration of superluminal squeezing propagation with
Vg ~ —7'000 m/s ~ —c/43'000 or time advancement of 11 uS

@ Control over spacial mode and spectral profile of squeezing
But more importantly

@ Squeezing is exciting

@ many applications benefit from squeezing

@ there is still a lot of interesting physics to do

Support from @

i |
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