Quantum optics and squeezed states of light

Eugeniy E. Mikhailov

The College of William & Mary

June 15, 2012

From ray optics to semiclassical optics

Classical/Geometrical optics

- light is a ray
- which propagates straight
- cannot explain diffraction and interference

Semiclassical optics

- light is a wave
- color (wavelength/frequency) is important
- amplitude (a) and phase are important, $E(t) = ae^{i(kz-\omega t)}$
- cannot explain residual measurements noise

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

Detectors sense the real part of the field (X_1) but there is a way to see X_2 as well

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \ \phi = \omega t - kz$$

Classical quadratures vs time in a rotating frame

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

Reality check quadratures vs time

$$E(\phi) = |a|e^{-i\phi} = |a|\cos(\phi) + i|a|\sin(\phi) = X_1 + iX_2, \quad \phi = \omega t - kz$$

Detector quantum noise

Simple photodetector

Detector quantum noise

Simple photodetector

Balanced photodetector

Transition from classical to quantum field

Classical analog

- Field amplitude a
- Field real part

$$X_1=(a^*+a)/2$$

 Field imaginary part $X_2 = i(a^* - a)/2$

$$E(\phi) = |a|e^{-i\phi} = X_1 + iX_2$$

Quantum approach

- Field operator â
- Amplitude quadrature $\hat{\mathbf{X}}_1 = (\hat{a}^\dagger + \hat{a})/2$
- Phase quadrature

$$\hat{X}_2 = i(\hat{a}^\dagger - \hat{a})/2$$

$$\hat{E}(\phi) = \hat{X}_1 + i\hat{X}_2$$

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N > 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Heisenberg uncertainty principle and its optics equivalent

Heisenberg uncertainty principle

 $\Delta p \Delta x \geq \hbar/2$

The more precisely the POSITION is determined, the less precisely the MOMENTUM is known, and vice versa

Optics equivalent

 $\Delta \phi \Delta N > 1$

The more precisely the PHASE is determined, the less precisely the AMPLITUDE is known, and vice versa

Optics equivalent strict definition

 $\Delta X_1 \Delta X_2 \geq 1/4$

Quantum optics summary

Light consist of photons

•
$$\hat{N} = a^{\dagger}a$$

Commutator relationship

•
$$[a, a^{\dagger}] = 1$$

$$[X_1, X_2] = i/2$$

Detectors measure

- number of photons \hat{N}
- Quadratures $\hat{X_1}$ and $\hat{X_2}$

Uncertainty relationship

$$\Delta X_1 \Delta X_2 \ge 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

$$\Delta X_1 \Delta X_2 = 1/4$$

Unsqueezed coherent

Unsqueezed coherent

Amplitude squeezed

Unsqueezed

Amplitude squeezed

Phase squeezed

Unsqueezed coherent

Phase squeezed

Vacuum squeezed

Possible squeezing applications

- improvements any shot noise limited optical sensors
- noiseless signal amplification
- secure communications (you would notice eavesdropper)
- photon pair generation, entanglement, true single photon sources
- interferometers sensitivity boost (for example gravitational wave antennas)
- light free measurements
- quantum memory probe and information carrier

Squeezing and interferometer

Squeezing and interferometer

Vacuum input

Squeezing and interferometer

Vacuum input

Squeezed input

Laser Interferometer Gravitational-wave Observatory

- L = 4 km
- $h \sim 10^{-21}$
- $\bullet \ \Delta L \sim 10^{-18} \ m$
- ullet $\Delta\phi\sim 10^{-10}~{
 m rad}$

Squeezing level vs time (unlocked)

"A quantum-enhanced prototype gravitational-wave detector", Nature Physics, **4**, 472-476, (2008).

GW 40m detector and squeezer

GW 40m detector with 4dB of squeezed vacuum

Signal to noise improvement by factor of 1.43

Take a vacuum state |0>

$$H=\frac{1}{2}$$

Take a vacuum state |0>

$$H=\frac{1}{2}$$

Apply squeezing operator $|\xi>=\hat{S}(\xi)|0>$

$$\hat{S}(\xi) = e^{\frac{1}{2}\xi^*a^2 - \frac{1}{2}\xi a^{\dagger 2}}$$

Take a vacuum state |0>

$$H=\frac{1}{2}$$

Apply squeezing

$$\hat{S}(\xi) = e^{\frac{1}{2}\xi^*a^2 - \frac{1}{2}\xi a^{\dagger 2}}$$

Apply displacement operator $|\xi\rangle = \hat{S}(\xi)|0\rangle$ operator $|\alpha, \xi\rangle = \hat{D}(\alpha)|s\rangle$

$$\hat{D}(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$$

$$<\alpha, \xi | X_1 | \alpha, \xi > = Re(\alpha),$$

 $<\alpha, \xi | X_2 | \alpha, \xi > = Im(\alpha)$

Take a vacuum state |0>

$$H=\frac{1}{2}$$

Apply squeezing

$$\hat{S}(\xi) = e^{\frac{1}{2}\xi^*a^2 - \frac{1}{2}\xi a^{\dagger 2}}$$

Apply displacement operator $|\xi>=\hat{S}(\xi)|0>$ operator $|\alpha,\xi>=\hat{D}(\alpha)|s>$

$$\hat{D}(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$$

$$<\alpha, \xi | X_1 | \alpha, \xi > = Re(\alpha),$$

 $<\alpha, \xi | X_2 | \alpha, \xi > = Im(\alpha)$

Notice
$$\Delta X_1 \Delta X_2 = \frac{1}{4}$$

Squeezed state $|\xi>=\hat{S}(\xi)|0>$ properties

$$\hat{S}(\xi) = e^{rac{1}{2}\xi^*a^2 - rac{1}{2}\xi a^{\dagger 2}}, \xi = re^{i heta}$$
 If $heta = 0$
$$< \xi |(\Delta X_1)^2|\xi> = rac{1}{4}e^{-2r}$$

$$< \xi |(\Delta X_2)^2|\xi> = rac{1}{4}e^{2r}$$

$$<\xi|(\Delta X_1)^2|\xi> = \frac{1}{4}(\cosh^2 r + \sinh^2 r - 2\sinh r\cosh r\cos\theta)$$

$$<\xi|(\Delta X_2)^2|\xi> = \frac{1}{4}(\cosh^2 r + \sinh^2 r + 2\sinh r\cosh r\cos\theta)$$

Photon number of squeezed state $|\xi>$

Probability to detect given number of photons $C = \langle n | \xi \rangle$ for squeezed vacuum

even

$$C_{2m} = (-1)\frac{\sqrt{(2m)!}}{2^m m!} \frac{(e^{i\theta} \tanh r)^m}{\sqrt{\cosh r}}$$

odd

$$C_{2m+1}=0$$

Average number of photons in general squeezed state

$$<\alpha,\xi|\mathbf{a}^{\dagger}\mathbf{a}|\alpha,\xi>=\alpha+\sinh^2r$$

Tools for squeezing

Tools for squeezing

Tools for squeezing

Two photon squeezing picture

Squeezing operator

$$\hat{S}(\xi) = e^{\frac{1}{2}\xi^* a^2 - \frac{1}{2}\xi a^{\dagger 2}}$$

Parametric down-conversion in crystal

$$\hat{H} = i\hbar\chi^{(2)}(\mathbf{a}^2b^{\dagger} - \mathbf{a}^{\dagger2}b)$$

Squeezing

result of correlation of upper and lower sidebands

Squeezer appearance

Squeezer appearance

Squeezer appearance

Crystal squeezing setup scheme

"Noninvasive measurements of cavity parameters by use of squeezed vacuum", Physical Review A, 74, 033817, (2006).

Summary for crystal squeezing

Pros

- mainstream: many different nonlinear crystals available
- so far the best squeezers
 - maximum squeezing value detected 11.5 dB at 1064 nm
 - Moritz Mehmet, Henning Vahlbruch, Nico Lastzka, Karsten Danzmann, and Roman Schnabel, "Observation of squeezed states with strong photon-number oscillations", Phys. Rev. A 81, 013814 (2010)
- well understood

Cons

- crystals have limited transparency window
- thus squeezing is hard to generate at visible wavelength
 - at 795 nm only 4-6 dB squeezing is reported
- this limits applications of such squeezers for spectroscopy

Quantum memory with atomic ensembles

Storage and retrieval

Storage and retrieval

single photon

Storage and retrieval

- single photon
- squeezed state (Furusawa and Lvovsky PRL 100 2008)

Storage and retrieval

- single photon
- squeezed state (Furusawa and Lvovsky PRL 100 2008)

Squeezed state requirements for a quantum memory probe

Storage and retrieval

- single photon
- squeezed state (Furusawa and Lvovsky PRL 100 2008)

Squeezed state requirements for a quantum memory probe

- squeezing carrier at atomic wavelength (780nm, 795nm)
- squeezing within narrow resonance window at frequencies(<100kHz)

Storage and retrieval

- single photon
- squeezed state (Furusawa and Lvovsky PRL 100 2008)

Squeezed state requirements for a quantum memory probe

- squeezing carrier at atomic wavelength (780nm, 795nm)
- squeezing within narrow resonance window at frequencies(<100kHz)

Traditional nonlinear crystal based squeezers are capable of it, but they are extremely technically challenging especially at short wave length.

Self-rotation of elliptical polarization in atomic medium

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in}) \tag{1}$$

Setup

Noise contrast vs detuning in hot 87Rb vacuum cell

Optical magnetometer and non linear Faraday effect

⁸⁷Rb D₁ line

Optical magnetometer and non linear Faraday effect

0.05-0.05

Magnetic field (G)

LENS

-0.05

0

0.05

Magnetometer response vs atomic density

Shot noise limit of the magnetometer

$$S = |\mathbf{E}_p + \mathbf{E}_v|^2 - |\mathbf{E}_p - \mathbf{E}_v|^2$$

$$S = 4\mathbf{E}_p\mathbf{E}_v$$

$$< \Delta S > \sim \mathbf{E}_p < \Delta \mathbf{E}_v >$$

Squeezed enhanced magnetometer setup

Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Magnetometer noise floor improvements

Magnetometer sensitivity vs atomic density

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

Summary

- Squeezing is exiting
- Many applications benefit from squeezing
 - interferometers
 - gravitational antennas
 - magnetometers
 - quantum memory
- There is still a lot of interesting physics to do