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Transition from classical to quantum field

Classical analog
Field amplitude a
Field real part
X1 = (a∗ + a)/2
Field imaginary part
X2 = i(a∗ − a)/2

E(φ) = |a|e−iφ = X1 + iX2

X
2

X
1

φ

Quantum approach
Field operator â
Amplitude quadrature
X̂1 = (â† + â)/2
Phase quadrature
X̂2 = i(â† − â)/2

Ê(φ) = X̂1 + i X̂2

X
2

X
1

φ
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Squeezed quantum states zoo
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Squeezed quantum states zoo
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Self-rotation of elliptical polarization in atomic medium

SR

∆

Ω+ Ω-

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of
4-6 dB noise suppression

aout = ain +
igL
2

(a†in − ain) (1)
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Simplified setup

PBSPBS
RB87

LOV.Sq
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Setup
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Noise contrast vs detuning in hot 87Rb vacuum cell

Fg = 2→ Fe = 1,2
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Fg = 1→ Fe = 1,2
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Atomic low frequency squeezing source
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Optical magnetometer based on Faraday effect
87Rb D1 line
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Optical magnetometer and non linear Faraday effect

Naive model of rotation
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Magnetometer response vs atomic density
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Shot noise limit of the magnetometer

Rb Cell Rb Cell
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Squeezed enhanced magnetometer setup

Rb Cell Rb Cell
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Note: Squeezed enhanced magnetometer was first demonstrated by
Wolfgramm et. al Phys. Rev. Lett, 105, 053601, 2010.
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Magnetometer noise floor improvements
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Magnetometer noise spectra
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Noise suppression and response vs atomic density

Noise suppression
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Magnetometer with squeezing enhancement
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Light group velocity expression

Group velocity vg = c
ω ∂n

∂ω

Susceptibility
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Light group velocity expression

Group velocity vg = c
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Light group velocity estimate

Group velocity vg = c
ω ∂n

∂ω

Delay τ = L
vg
∼ ∂n

∂ω ∼ ∂R
∂B
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Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW =
3 MHz, RBW = 100 kHz
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Squeezing vs magnetic field
Spectrum analyzer settings: Central frequency = 1 MHz, VBW =
3 MHz, RBW = 100 kHz
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Time advancement setup
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Squeezing modulation and time advancement
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Squeezing after advancement cell
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Advancement vs power
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Advancement vs power
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Quantum limited interferometers revisited

Vacuum input

laser

Squeezed input

laser
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Limiting noise - Quantum Optical noise

Next generation of LIGO will be
quantum optical noise limited at almost all detection frequencies.

shot noise
Uncertainty in number of
photons

h ∼
√

1
P

(2)

radiation pressure noise
Photons impart momentum to
mirrors

h ∼
√

P
M2f 4 (3)

There is no optimal light power to suit all detection frequency.
Optimal power depends on desired detection frequency.
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Interferometer sensitivity improvement with squeezing

Projected advanced LIGO sensitivity

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)
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EIT filter
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Squeezing and EIT filter
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Squeezing and EIT filter setup
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Squeezing and EIT filter setup
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EIT filter and measurements without light
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Squeezing angle rotation
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Narrower filter

T=35◦C, no control
transmission 42%
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Narrower filter

T=35◦C, no control
transmission 42%
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Excess noise and leakage
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Theoretical prediction for MOT squeezing with 87Rb

Fg = 2→ Fe = 1,2 high optical density is very important
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MOT squeezer

Cloud size =1 mm, T = 200 µK, N = 7× 109 1/cm3,
OD = 2, beam size = 0.1 mm, 105 interacting atoms

PBSPBS

V.Sq LO
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Noise contrast in MOT with 87Rb Fg = 2→ Fe = 1

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
N

o
is

e
 (

d
B

)

Quadrature angle  (Arb. Units)

(a)

(b)

Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 39 / 42



Squeezing in MOT with 87Rb Fg = 2→ Fe = 1
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Summary

We demonstrate fully atomic squeezed enhanced magnetometer
Magnetometer noise floor lowered in the range from several kHz
to several MHz
Demonstrated sensitivity as low as 1 pT/

√
Hz in our particular

setup
First demonstration of superluminal squeezing propagation with
vg = c/2000 or time advancement of 0.5 µS

For more details:
T. Horrom, et al. “Quantum Enhanced Magnetometer with Low
Frequency Squeezing”, PRA, 86, 023803, (2012).
T. Horrom, et al. “All-atomic generation and noise-quadrature
filtering of squeezed vacuum in hot Rb vapor”, arXiv:1204.3967.
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