Quantum enhanced magnetometer and squeezed state of light tunable filter

Eugeniy E. Mikhailov

The College of William & Mary

October 5, 2012

 Ω

Transition from classical to quantum field

Classical analog

- Field amplitude *a*
- Field real part $X_1 = (a^* + a)/2$
- Field imaginary part $X_2 = i(a^* - a)/2$

Quantum approach

- Field operator *a*ˆ
- Amplitude quadrature $\hat{X_1} = (\hat{a}^\dagger + \hat{a})/2$
- Phase quadrature $\hat{\mathcal{X}}_2 = i(\hat{a}^\dagger - \hat{a})/2$

 Ω

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) Corolex Corolex Corolex Corolex A / 42

Self-rotation of elliptical polarization in atomic medium

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$
a_{out}=a_{in}+\frac{igL}{2}(a_{in}^{\dagger}-a_{in})
$$
\n(1)

 Ω

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) Coronal Coro

重

 299

イロトメ 倒 トメ ミトメ 毛

Þ

 299

 \sim 造

4 0 3 4 5 3 4 5 3

Noise contrast vs detuning in hot ⁸⁷Rb vacuum cell

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 9 / 42

 87 Rb D₁ line

4 0 8

 87 Rb D₁ line

detuning

 299

A

4 D.K. \mathcal{A} \sim \mathcal{A}

重き 舌

 \blacktriangleleft

 87 Rb D₁ line

Susceptibility vs B

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 11 / 42

 299

画

4 D.K. \blacktriangleleft \sim \mathcal{A}

重き 舌

 \rightarrow

 87 Rb D₁ line

χ ′′(+∆)

4 0 8

D

 87 Rb D₁ line

4 EL H ϵ **D** ∋⇒

 87 Rb D₁ line

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 11 / 42

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

4 0 8

 QQ

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 12 / 42

Shot noise limit of the magnetometer

 QQ

ヨネ イヨネ

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

4 D.K.

Squeezed enhanced magnetometer setup

Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 05360[1,](#page-20-0) [20](#page-22-0)[1](#page-20-0)[0.](#page-21-0) Ω

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 15 / 42

Magnetometer noise floor improvements

Magnetometer noise spectra

Noise suppression and response vs atomic density

י ז' Noise suppression (dB) Noise suppression (dB) 아 −2 5 kHz 100 kHz 500 kHz −4 1 MHz -6 ¹⁰ 10¹¹ 10¹² Atomic density (atoms/cm³) 0.25 1 $\frac{1}{5}$ 0.2 $\frac{1}{10}$ Normalized transmission Slope of rotation signal (V/ 0.95 0.15 0.9 c 0.1 0.85 0.05 -0.8 m 10^{10} 10^{10} 10^{10} 10¹⁰ 10¹² $10^{\frac{11}{12}}$ At[omic](#page-23-0) de[nsit](#page-25-0)[y \(a](#page-23-0)[toms](#page-24-0)[/c](#page-25-0)[m](#page-10-0)³[\)](#page-11-0) QQ

Noise suppression

Response

Magnetometer with squeezing enhancement

 QQ

Group velocity
$$
v_g = \frac{c}{\omega \frac{\partial n}{\partial \omega}}
$$

Susceptibility

′ Rotation vs B field

4 (11.1)

Group velocity
$$
v_g = \frac{c}{\omega \frac{\partial n}{\partial \omega}}
$$

Susceptibility

Rotation vs B field

4 (11.1)

Light group velocity estimate

c Group velocity *v^g* = Delay τ = ∼ ∂ω ∼ ∂*n vg* ∂*B* ω ∂ω

L

∂*n*

∂*R*

重

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Light group velocity estimate

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

4 0 8 1

 $\mathbf{A} \cap \mathbf{B}$ $\mathbf{B} \cap \mathbf{A}$ $\mathbf{B} \cap \mathbf{B}$

 QQ

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

4 0 8

D

4 0 8 1 $AB +$ \rightarrow \pm \rightarrow ϵ Þ E.

Squeezing modulation and time advancement

4 (11.1)

4 0 8 1 \leftarrow \Box \mathbf{p} B

 \mathcal{A} \rightarrow $\overline{4}$ Ξ E.

Advancement vs power

4 0 8 1 ϵ 有 \mathbf{p} 重き

 \mathcal{A}

Þ

Quantum limited interferometers revisited

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 27 / 42

4 0 8

D

quantum optical noise limited at almost all detection frequencies.

 Ω

Bara B

4 D.K.

quantum optical noise limited at almost all detection frequencies.

shot noise

\nUncertainty in number of photons

\n
$$
h \sim \sqrt{\frac{1}{P}}
$$
\n(2)

 Ω

quantum optical noise limited at almost all detection frequencies.

shot noise	radiation pressure noise		
Uncertainty in number of photons	Photons	Photons	Montons
$h \sim \sqrt{\frac{1}{P}}$	(2)	$h \sim \sqrt{\frac{P}{M^2 f^4}}$	(3)

 Ω

quantum optical noise limited at almost all detection frequencies.

There is no optimal light power to suit all detection frequency. Optimal power depends on desired detection frequency.

 Ω

イロト イ部 トイモ トイモ

Interferometer sensitivity improvement with squeezing

Projected advanced LIGO sensitivity

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 29 / 42

 QQ

重

イロト イ部 トイモト イモト

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) Corresponding the Corresponding Corresponding to the October 5, 2012 30 / 42

重

 298

メロトメ 倒 トメ きょくきょ

$$
\left(\begin{array}{c} V_1^{out} \\ V_2^{out} \end{array}\right) = \left(\begin{array}{cc} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{array}\right) \left(\begin{array}{c} V_1^{in} \\ V_2^{in} \end{array}\right) + \left[1 - \left(A_+^2 + A_-^2\right)\right] \left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

4 0 8

4 @ 下

重き \sim **E**

Þ

$$
\left(\begin{array}{c} V_1^{out} \\ V_2^{out} \end{array}\right)=\ \left(\begin{array}{cc} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{array}\right)\left(\begin{array}{c} V_1^{in} \\ V_2^{in} \end{array}\right)+\left[1-\left(A_+^2+A_-^2\right)\right]\left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

$$
\varphi_{\pm} = \frac{1}{2} (\Theta_{+} \pm \Theta_{-})
$$

$$
A_{\pm} = \frac{1}{2} (T_{+} \pm T_{-})
$$

4

重き ϵ 舌

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) Coctober 5, 2012 31 / 42

 \rightarrow

É

$$
\left(\begin{array}{c} V_1^{out} \\ V_2^{out} \end{array}\right)=\ \left(\begin{array}{cc} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{array}\right)\left(\begin{array}{c} V_1^{in} \\ V_2^{in} \end{array}\right)+\left[1-\left(A_+^2+A_-^2\right)\right]\left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

$$
\varphi_{\pm} = \frac{1}{2} (\Theta_{+} \pm \Theta_{-})
$$

$$
A_{\pm} = \frac{1}{2} (T_{+} \pm T_{-})
$$

4 ロ ト 4 何 ト 4 ヨ ト

重

 299

 \sim 舌

$$
\left(\begin{array}{c} V_1^{out} \\ V_2^{out} \end{array}\right)=\ \left(\begin{array}{cc} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{array}\right)\left(\begin{array}{c} V_1^{in} \\ V_2^{in} \end{array}\right)+\left[1-\left(A_+^2+A_-^2\right)\right]\left(\begin{array}{c} 1 \\ 1 \end{array}\right)
$$

$$
\varphi_{\pm} = \frac{1}{2} (\Theta_{+} \pm \Theta_{-})
$$

$$
A_{\pm} = \frac{1}{2} (T_{+} \pm T_{-})
$$

4 0 8

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

重き \mathcal{A} Þ

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) Coctober 5, 2012 31 / 42

B

É

 299

イロメ イ部メ イミメ イモメ

Squeezing and EIT filter setup

4 0 8 1 \leftarrow \Box \mathcal{A} 重き ϵ Þ Þ

EIT filter and measurements without light

Coherent signal

Squeezing angle rotation

Low control power

 $\begin{pmatrix} V_1^{out} \\ V_2^{out} \end{pmatrix}$ $= \begin{pmatrix} \cos^2 \varphi_+ & \sin^2 \varphi_+ \\ \sin^2 \varphi_+ & \cos^2 \varphi_+ \end{pmatrix}$ sin $^2\varphi_+$ cos $^2\varphi_+$ $\left(\begin{array}{cc} A_{+}^{2} & A_{-}^{2} \ A_{-}^{2} & A_{+}^{2} \end{array} \right)$ $\left(\begin{array}{c} V_1^{in} \\ V_2^{in} \end{array}\right)$ $\bigg) + \bigg[1 - \bigg(A_+^2 + A_-^2\bigg)\bigg] \bigg(\begin{array}{c} 1 \\ 1 \end{array}$ 1 λ Locked at 300kHz Locked at 1200kHz

Narrower filter

T=35◦C, no control transmission 42%

T=40◦C, no control transmission 17%

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 35 / 42

Narrower filter

T=35◦C, no control transmission 42%

T=40◦C, no control transmission 17%

Eugeniy E. Mikhailov (W&M) [Squeezed light](#page-0-0) October 5, 2012 35 / 42

Excess noise and leakage

Theoretical prediction for MOT squeezing with ⁸⁷Rb

 $F_q = 2 \rightarrow F_e = 1, 2$ high optical density is very important

÷

 QQ

MOT squeezer

Cloud size =1 mm, T = 200 μ K, N = 7 \times 10⁹ 1/cm³, $OD = 2$, beam size = 0.1 mm, 10⁵ interacting atoms

Noise contrast in MOT with ⁸⁷Rb $F_g = 2 \rightarrow \overline{F}_e = 1$

Squeezing in MOT with 87 Rb $F_q = 2 \rightarrow F_e = 1$

People

Travis Horrom and Gleb Romanov

Robinjeet Singh, LSU

Irina Novikova

Jonathan P. Dowling, LSU

4 0 3 4 4 5 4 5 3 4

 299

舌

Summary

- We demonstrate fully atomic squeezed enhanced magnetometer
- Magnetometer noise floor lowered in the range from several kHz to several MHz
- Demonstrated sensitivity as low as 1 pT/ $\sqrt{\text{Hz}}$ in our particular setup
- First demonstration of superluminal squeezing propagation with $v_q = c/2000$ or time advancement of 0.5 μ S

For more details:

- T. Horrom, et al. "Quantum Enhanced Magnetometer with Low Frequency Squeezing", **PRA**, 86, 023803, (2012).
- T. Horrom, et al. "All-atomic generation and noise-quadrature filtering of squeezed vacuum in hot Rb vapor", arXiv:1204.3967.

Support from

 Ω