Quantum enhanced magnetometer and squeezed state of light tunable filter

Eugeniy E. Mikhailov

The College of William & Mary

October 5, 2012

Transition from classical to quantum field

Classical analog

- Field amplitude a
- Field real part $X_1 = (a^* + a)/2$
- Field imaginary part $X_2 = i(a^* a)/2$

Quantum approach

- Field operator â
- Amplitude quadrature $\hat{X_1} = (\hat{a}^\dagger + \hat{a})/2$
- Phase quadrature $\hat{\chi_2} = i(\hat{a}^{\dagger} \hat{a})/2$

3/42

Eugeniy E. Mikhailov (W&M)

Squeezed light

Eugeniy E. Mikhailov (W&M)

Squeezed light

Self-rotation of elliptical polarization in atomic medium

A.B. Matsko et al., PRA 66, 043815 (2002): theoretically prediction of 4-6 dB noise suppression

$$a_{out} = a_{in} + \frac{igL}{2}(a_{in}^{\dagger} - a_{in})$$
 (1)

Eugeniy E. Mikhailov (W&M)

æ

<ロト < 回 > < 回 > < 回 >

Eugeniy E. Mikhailov (W&M)

<ロト < 回 > < 回 > < 回 > < 回</p>

Noise contrast vs detuning in hot ⁸⁷Rb vacuum cell

Eugeniy E. Mikhailov (W&M)

Squeezed light

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

Squeezed light

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

< 17 ▶

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

Squeezed light

→ Ξ → < Ξ</p>

< 17 ▶

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

Squeezed light

- The

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

Squeezed light

⁸⁷Rb D₁ line

Eugeniy E. Mikhailov (W&M)

Squeezed light

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Eugeniy E. Mikhailov (W&M)

Optical magnetometer and non linear Faraday effect

Naive model of rotation

Experiment

Shot noise limit of the magnetometer

イロト イポト イヨト イヨト

Squeezed enhanced magnetometer setup

Note: Squeezed enhanced magnetometer was first demonstrated by Wolfgramm *et. al* Phys. Rev. Lett, **105**, 053601, 2010.

Eugeniy E. Mikhailov (W&M)

Squeezed light

Magnetometer noise floor improvements

Magnetometer noise spectra

Noise suppression and response vs atomic density

Noise suppression (dB) Noise suppression 5 kHz 100 kHz 500 kHz 1 MHz -6 10¹⁰ 10¹² 10¹¹ Atomic density (atoms/cm³) 0.25 Slope of rotation signal (V/µT) 0.2 formalized transmission 0.15 0.1 0.05 Ċ 0L 10¹⁰ 1012' 1011 Atomic density (atoms/cm3) Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 2012 18/42

Response

Magnetometer with squeezing enhancement

Eugeniy E. Mikhailov (W&M)

Squeezed light

October 5, 2012 19 / 42

Group velocity
$$v_g = rac{c}{\omega rac{\partial n}{\partial \omega}}$$

Susceptibility

Rotation vs B field

Eugeniy E. Mikhailov (W&M)

Squeezed light

October 5, 2012 20 / 42

Group velocity
$$v_g = rac{c}{\omega rac{\partial n}{\partial \omega}}$$

Susceptibility

Rotation vs B field

Light group velocity estimate

Group velocity
$$v_g = \frac{c}{\omega \frac{\partial n}{\partial \omega}}$$
 Delay $\tau = \frac{L}{v_g} \sim \frac{\partial n}{\partial \omega} \sim$

Eugeniy E. Mikhailov (W&M)

э

- The

 $\frac{\partial R}{\partial B}$

Light group velocity estimate

Eugeniy E. Mikhailov (W&M)

October 5, 2012 21 / 42

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

Squeezing vs magnetic field

Spectrum analyzer settings: Central frequency = 1 MHz, VBW = 3 MHz, RBW = 100 kHz

< 61 b

-1

-1.5

2

2 5

1.2

э

イロト イポト イヨト イヨ

Squeezing modulation and time advancement

- T

Eugeniy E. Mikhailov (W&M)

э

I > <
I >
I

- 4 ∃ →

Advancement vs power

I > <
I >
I

Quantum limited interferometers revisited

- The

Next generation of LIGO will be quantum optical noise limited at almost all detection frequencies.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Next generation of LIGO will be

quantum optical noise limited at almost all detection frequencies.

shot noise

Uncertainty in number of photons

$$h \sim \sqrt{\frac{1}{P}}$$
 (2)

< 回 ト < 三 ト < 三

Next generation of LIGO will be

quantum optical noise limited at almost all detection frequencies.

shot noise

Uncertainty in number of photons

$$h \sim \sqrt{\frac{1}{P}}$$
 (2)

radiation pressure noise

Photons impart momentum to mirrors

$$n \sim \sqrt{\frac{P}{M^2 f^4}}$$
 (3)

・ 同 ト ・ ヨ ト ・ ヨ ト

Next generation of LIGO will be

quantum optical noise limited at almost all detection frequencies.

There is no optimal light power to suit all detection frequency. Optimal power depends on desired detection frequency.

イロト イポト イヨト イヨト

Interferometer sensitivity improvement with squeezing

Projected advanced LIGO sensitivity

F. Ya. Khalili Phys. Rev. D 81, 122002 (2010)

Eugeniy E. Mikhailov (W&M)

Ξ.

イロト イロト イヨト イヨト

æ

イロト イロト イモト イモト

$$\begin{pmatrix} V_1^{out} \\ V_2^{out} \end{pmatrix} = \begin{pmatrix} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{pmatrix} \begin{pmatrix} V_1^{in} \\ V_2^{in} \end{pmatrix} + \begin{bmatrix} 1 - (A_+^2 + A_-^2) \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\varphi_{\pm} = \frac{1}{2} (\Theta_{+} \pm \Theta_{-})$$
$$A_{\pm} = \frac{1}{2} (T_{+} \pm T_{-})$$

Eugeniy E. Mikhailov (W&M)

Squeezed light

October 5, 2012 31 / 42

E

э

$$\begin{pmatrix} V_1^{out} \\ V_2^{out} \end{pmatrix} = \begin{pmatrix} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{pmatrix} \begin{pmatrix} V_1^{in} \\ V_2^{in} \end{pmatrix} + \left[1 - \left(A_+^2 + A_-^2 \right) \right] \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\varphi_{\pm} = \frac{1}{2} (\Theta_{+} \pm \Theta_{-})$$
$$A_{\pm} = \frac{1}{2} (T_{+} \pm T_{-})$$

イロト イポト イヨト イヨ

Eugeniy E. Mikhailov (W&M)

Squeezed light

October 5, 2012 31 / 42

E

$$\begin{pmatrix} V_1^{out} \\ V_2^{out} \end{pmatrix} = \begin{pmatrix} A_+^2 & A_-^2 \\ A_-^2 & A_+^2 \end{pmatrix} \begin{pmatrix} V_1^{in} \\ V_2^{in} \end{pmatrix} + \left[1 - \left(A_+^2 + A_-^2 \right) \right] \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\varphi_{\pm} = \frac{1}{2} (\Theta_{+} \pm \Theta_{-})$$
$$A_{\pm} = \frac{1}{2} (T_{+} \pm T_{-})$$

イロト イポト イヨト イヨ

Squeezed light

э

$$\begin{pmatrix} V_1^{out} \\ V_2^{out} \end{pmatrix} = \begin{pmatrix} A_{+}^2 & A_{-}^2 \\ A_{-}^2 & A_{+}^2 \end{pmatrix} \begin{pmatrix} V_1^{in} \\ V_2^{in} \end{pmatrix} + \begin{bmatrix} 1 - (A_{+}^2 + A_{-}^2) \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\varphi_{\pm} = \frac{1}{2} (\Theta_{+} \pm \Theta_{-})$$
$$A_{\pm} = \frac{1}{2} (T_{+} \pm T_{-})$$

Eugeniy E. Mikhailov (W&M)

Squeezed light

October 5, 2012 31 / 42

・ 同 ト ・ ヨ ト ・

イロト イロト イヨト イヨト

Squeezing and EIT filter setup

э

イロト イロト イヨト イ

EIT filter and measurements without light

Squeezing angle rotation

 $\begin{pmatrix} V_{1}^{out} \\ V_{2}^{out} \end{pmatrix} = \begin{pmatrix} \cos^{2}\varphi_{+} & \sin^{2}\varphi_{+} \\ \sin^{2}\varphi_{+} & \cos^{2}\varphi_{+} \end{pmatrix} \begin{pmatrix} A_{+}^{2} & A_{-}^{2} \\ A_{-}^{2} & A_{+}^{2} \end{pmatrix} \begin{pmatrix} V_{1}^{in} \\ V_{2}^{in} \end{pmatrix} + \begin{bmatrix} 1 - \left(A_{+}^{2} + A_{-}^{2}\right) \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Locked at 300kHz Locked at 1200kHz

Narrower filter

T=35°C, no control transmission 42%

T=40°C, no control transmission 17%

Eugeniy E. Mikhailov (W&M)

Squeezed light

Narrower filter

T=35°C, no control transmission 42%

T=40°C, no control transmission 17%

Eugeniy E. Mikhailov (W&M)

Excess noise and leakage

Effect of leakage photons

Theoretical prediction for MOT squeezing with ⁸⁷Rb

 $F_g = 2 \rightarrow F_e = 1, 2$ high optical density is very important

Eugeniy E. Mikhailov (W&M)

Squeezed light

MOT squeezer

Cloud size =1 mm, T = 200 μ K, N = 7 \times 10⁹ 1/cm³, OD = 2, beam size = 0.1 mm, 10⁵ interacting atoms

Eugeniy E. Mikhailov (W&M)

Noise contrast in MOT with ⁸⁷Rb $F_g = 2 \rightarrow F_e = 1$

Squeezing in MOT with ⁸⁷Rb $F_g = 2 \rightarrow F_e = 1$

People

Travis Horrom and Gleb Romanov

Robinjeet Singh, LSU

Irina Novikova

Jonathan P. Dowling, LSU

Summary

- We demonstrate fully atomic squeezed enhanced magnetometer
- Magnetometer noise floor lowered in the range from several kHz to several MHz
- Demonstrated sensitivity as low as 1 pT/ \sqrt{Hz} in our particular setup
- First demonstration of superluminal squeezing propagation with $v_g = c/2000$ or time advancement of 0.5 μ S

For more details:

- T. Horrom, et al. "Quantum Enhanced Magnetometer with Low Frequency Squeezing", **PRA**, 86, 023803, (2012).
- T. Horrom, et al. "All-atomic generation and noise-quadrature filtering of squeezed vacuum in hot Rb vapor", arXiv:1204.3967.

Support from

