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An SU(1,1) interferometer uses a sequence of two optical
parametric amplifiers for achieving sub-shot-noise sensitivity
to a phase shift introduced in between. We present the first
realization of a wide-field SU(1,1) interferometer, where the
use of a focusing element enables spatially multimode oper-
ation within a broad angle. Over this angle, the interference
phase is found to be flat. This property is important for the
high sensitivity to the phase front disturbance. Further,
−4.3� 0.7 dB quadrature squeezing, an essential requirement
to the high sensitivity, is experimentally demonstrated for
plane-wave modes inside the interferometer. Such an interfer-
ometer is useful not only for quantum metrology, but also in
remote sensing, enhanced sub-shot-noise imaging, and quan-
tum information processing. © 2019 Optical Society of America
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Interferometers have been used for more than a century to measure
physical quantities with high accuracy. Recently, the experimental
realization of SU(1,1) interferometers has raised significant interest
due to the loss-tolerant sub-shot-noise sensitivity [1–14]. The core
idea is to use a series of two optical parametric amplifiers (OPAs)
to probe phase shifts between them [15,16]. Possible applications
are in remote sensing [11] and in quantum information pro-
cessing [14], but such a scheme is especially attractive for quantum
metrology with optical [2,7,9], atom [5,17], and hybrid [18]
interferometers.

The two-mode squeezed state employed in an SU(1,1) inter-
ferometer is a quantum resource that helps to overcome the lim-
itations encountered in a classical framework. In the optical phase
measurement, the achievable sensitivity for an SU(1,1) interfer-
ometer beats the shot-noise limit, especially in the low photon-
number regime [7,9]. The SU(1,1) configuration is tolerant to
detection losses, provided that the second OPA has a sufficiently
large gain [14,19,20]. To satisfy this condition, one can use two
nonlinear χ�2� crystals as OPAs, since unbalancing the OPAs does

not highly affect the mode composition, compared to the case of
atoms [5,17] or four-wave mixers [2,6]. All SU(1,1) interferom-
eters realized so far are spatially single-mode and allow high sen-
sitivity in one dimension only.

In this Letter, we report the first demonstration of a spatially
multimode SU(1,1) interferometer, using high-gain parametric
downconversion (PDC) produced in a nonlinear crystal. This
paves the way toward 2D phase profiling in the quantum regime,
close to the common idea of an interferometer with a 2D fringe
pattern. Furthermore, our configuration opens up the possibility
to enhanced quantum imaging [21] and to the detection of a
small disturbance in the orbital angular momentum (OAM) [11].
Finally, we report the measurement of quadrature squeezing for
plane-wave modes inside the interferometer, as a prerequisite for
achieving high sensitivity. We find that for all plane-wave modes,
it is approximately the same quadrature that is squeezed.

The principle of our SU(1,1) interferometer is based on two
nonlinear crystals with a focusing element in between, as shown
in Fig. 1(a). The PDC radiation produced in the first crystal in the
degenerate Type I regime (shown with a red filled cone) is am-
plified or de-amplified in the second crystal (shown as a brighter
cone) depending on the optical phase between the pump, signal,
and idler fields ϕ � ϕp − ϕs − ϕi [19]. To exploit the full multi-
mode structure of the radiation generated in the first crystal, the
divergence of the PDC light is corrected with a lens. Provided that
the PDC generation region in the first crystal is imaged into the
second crystal, the amplification occurs for all angles of emission,
intrinsically restricted only by the phase matching conditions.
The configuration presented here offers good visibility over broad
angles due to the mode matching. In previous experiments with-
out the focusing element, spatial filtering of a single spatial mode
around the pump direction was necessary to obtain high visibility
and achieve sub-shot-noise phase sensitivity [9].

To avoid the focusing of the pump beam, the paths of the
pump and the PDC radiation are split and folded; see Fig. 1(b).
The pump is the third harmonic of a pulsed Nd:YAG laser (wave-
length 354.67 nm, repetition rate 1 kHz, pulse duration 18 ps,
average power 60 mW). Type I collinear degenerate PDC is gen-
erated in a β-barium borate crystal. The half-wave plate, HWP,
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misaligns the linear polarization of the pump by 27 deg with re-
spect to the optimal (horizontal) direction in order to reduce the
parametric gain in the first pass.

Through the dichroic mirror DM2, the PDC radiation is sent
to the focusing element, i.e., a spherical mirror M1 with curvature
radius R � 100 mm, and is imaged back onto the crystal. The
pump transmitted by DM2 is sent to the quarter-wave plate
(QWP) for polarization control and to the mirror M2 mounted
on a piezoelectric actuator (PA) for phase control. The QWP on a
double pass acts as an HWP and, by rotating the pump polari-
zation, controls the parametric gain of the PDC generated in the
second pass. Additionally, the pump has a beam size of FWHM
300� 10 μm in the first pass and, to provide a higher parametric
gain, 180� 10 μm in the second pass. From the nonlinear
dependence of the PDC intensity on the pump power, I�P� ∝
sinh2 G, G ∝

ffiffiffi
P

p
, we measure the gain, G [22]. We obtain sep-

arately the gain from the first pass G1 � 2.1� 0.3 and from the
second pass G2 � 3.3� 0.3. The gain unbalancing does not
reduce much the interference visibility (see Supplement 1 for de-
tails) but it is crucial for the detection of the squeezing, as ex-
plained below.

If the path lengths from M1 and M2 to the crystal are such
that the pump and PDC radiation pulses overlap on the way back,
phase-sensitive amplification/de-amplification occurs depending
on the phase shift controlled by the PA. The phase can be locked
with the use of an additional beam injected at the unused port of
DM2 and a feedback circuit (not shown). The dichroic mirror
DM3 reflects the amplified/de-amplified PDC radiation to a
charge-coupled device (CCD) camera in the Fourier plane of lens,
L, with a focal length f � 40 mm. The spectral filtering is
achieved with a bandpass filter (central wavelength either 700 or
710 nm, bandwidth 10 nm) and a long-pass filter with the edge at
645 nm, directly attached to the CCD.

The profile of the single-shot intensity distribution measured
at the output is shown in Fig. 2(a). As the phase is scanned, the
amplitude of the characteristic flattop intensity distribution for
phase-matched PDC emission varies periodically, while the width
stays constant. As shown in Fig. 2(a), the visibility of the inter-
ference pattern for a single pixel is 98%, but even for the intensity
integrated in two dimensions it is more than 95%.

Another remarkable property of the interferometer presented
here is the stability of the spatial spectrum at the output, and, in
particular, of the OAM spectrum, as the phase changes. Indeed,
for any kind of application, the operation of the interferometer needs
to be the same for all spatial modes. Further, the change of the OAM
spectrum due to an azimuthal phase perturbation can be sensitively
detected. To obtain the OAM spectrum at the output, we use a
method based on the measurement of the covariance of intensities
at different far-field points [23], specified by the transverse wave
vectors ~q, ~q 0, with modules q, q 0 and azimuthal angles θ, θ 0.
Under the condition q � q 0 � q0, the covariance, formally defined
as Covjq�q 0�q0�θ, θ 0� � hI�θ�I�θ 0�i − hI�θ�ihI�θ 0�i, can be
shown to depend only on the difference Δθ � θ − θ 0 [23].
Moreover, if the cross correlations in the PDC radiation are removed
by filtering a slightly nondegenerate wavelength, the covariance aver-
aged over the variable q0 is

Cov�Δθ� �
"X∞
l�−∞

Λl eilΔθ
#
2

: (1)

Here, Λl are the weights of modes with OAM l , normalized asP∞
l�−∞ Λl � 1. They can be extracted by performing a Fourier de-

composition on the square root of Eq. (1). In experiment, we re-
moved the cross correlations with a 10 nm bandpass filter
centered at 700 nm, which is shifted with respect to the degenerate
frequency 709.33 nm. The covariance was measured from ∼500
single-pulse intensity spectra acquired with the CCD camera.

Figure 2(b) shows the OAM weights of the radiation at the
output of the interferometer for three different optical phases,
namely �0.68 rad, �0.88 rad, and �1.08 rad from the dark
fringe respectively with blue, green, and yellow bars. The weights
remain the same as the phase is changed and this demonstrates
that all OAM modes are uniformly amplified/de-amplified. The
negative-OAM part is not shown here since it is symmetric with
respect to l � 0. The effective number of OAM modes, given by
the formula �P∞

l�−∞ Λ2
l �−1, is 7.6� 0.2. For comparison, the

number of OAM modes for the radiation in the first pass is

Fig. 1. (a) In a wide-field SU(1,1) interferometer, the degenerate PDC
radiation from the first χ�2� crystal is imaged into the second one. This
enables multimode amplification/de-amplification, shown in the exper-
imental far-field image. (b) In our experiment, the pump and the PDC
are split with dichroic mirrors DM1-2. A spherical mirror M1 images the
PDC radiation onto the crystal. Mirror M2 is mounted on the piezoelec-
tric actuator PA to control the phase and the half-wave plate HWP and
quarter-wave plate QWP control the polarization. The amplified/de-
amplified PDC radiation is observed in the Fourier plane of lens L
on the CCD camera. Dichroic mirror DM3 rejects the pump, while
the bandpass filter BF and long-pass filter LPF provide spectral filtering.

Fig. 2. (a) Intensity profile at the output of the interferometer for dif-
ferent phases. (b) Measured weights of OAM modes at the output of the
interferometer show independence on the phase as predicted by theory
(red). Relative shifts of the interferometric phase with respect to the dark
fringe ϕ � π are �0.68 rad (blue), �0.88 rad (green), and �1.08 rad
(yellow).
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theoretically estimated to be 13. The double-pass configuration
reduces the number of modes since the effective gain is larger than
the gain of the first pass [24]. We obtain the theoretical distribu-
tion of the OAM weights through the Schmidt decomposition of
the two-photon amplitude of PDC for the double-pass configu-
ration [24,25]. The theory [red bars in Fig. 2(b)] confirms the
experimental results in the same range of phases. For the case
ϕ � π, the theoretical distribution shows a slower decay and a
18% increase in the effective number of modes.

Estimating the number of radial modes at the output of the inter-
ferometer to be 15� 2 from a similar experimental reconstruction
in the radial degree of freedom, the total number of spatial modes is
110� 20. The multimode feature is attractive for the realization of
high-dimensional quantum spaces [26,27], but also for imaging
[28]. Indeed, the high-order modes are connected with fine details,
because of their high spatial frequency, and represent a resource for
the resolution in imaging experiments. We therefore characterize our
interferometer as a “wide-field” one: it provides both a relatively
broad angle (20 mrad) and a large number of angular modes within
this range.

Finally, we show that the quadrature noise for the radiation
inside the interferometer is below the shot noise. This is funda-
mental to achieve enhanced sensitivity with respect to a “classical”
interferometer with the same number of photons. Homodyne de-
tection is not suitable in our case since the PDC emission is highly
multimode and it requires the appropriate shaping of the local
oscillator field for the measurement of the squeezing in particular
eigenmodes (one at a time) [29,30]. However, it was recently
shown [14] that the second amplifier in an SU(1,1) interferom-
eter can be used for an “optical homodyne”measurement of quad-
rature squeezing at the output of the first amplifier. In this
approach, the variances of the input quadratures x̂i, p̂i can be
found by measuring the total intensity at the output:

I � C · Var�x̂ψ �, (2)

with the calibration constant C and the generic quadrature oper-
ator x̂ψ � x̂i cos ψ � p̂i sin ψ and the phase of the interferom-
eter ϕ � 2ψ. Equation (2) is valid only under the assumption
e4G2Var�x̂i� ≫ Var�p̂i�, where x̂i is the squeezed quadrature.
This holds true in our case because of the unbalanced gains
and because Var�p̂i�∕Var�x̂i� cannot exceed e4G1 . The constant
C can be calibrated by removing the input to the second-pass
OPA, leaving only vacuum fluctuations. Any loss induced at
the detection stage will not contribute because it is already in-
cluded in the constant C . This consideration is valid for single
mode, but it can be generalized to the multimode scenario. In
the measurement of the total intensity at the output, the contri-
bution of each mode to the amplification/de-amplification de-
pends on the relative phase between the modes and on the
overlap of the modes of the input state with the modes generated
in the second-pass OPA [31]. The shapes of the modes for PDC
radiation change very little as the gain increases [32]; therefore,
the overlap can be reasonably high.

The level of amplification/de-amplification is measured by
scanning the phase with a triangle-wave voltage applied to the
PA and the result is shown in Fig. 3(a). The measurement can
be considered simultaneously for two different regions of interest
(ROI) shown in panel (b): a single pixel (red) and the total frame
(blue). The constant C of Eq. (2) is obtained by blocking the
radiation from the first pass at the curved mirror M1 (fluctuations

are shown with the traces around zero). The small and large ROIs
give respectively the best squeezing level of −4.3� 0.7 dB,
−2.6� 0.3 dB and the best anti-squeezing level of 14.8�
0.9 dB, 13.2� 0.1 dB. There is a good agreement between
the anti-squeezing level (less sensitive to mode mismatch and
losses) and the value expected from the independently measured
gain G1. The measurement is made with the bandpass filter cen-
tered at 710 nm, but the result is similar for 700 nm.

By considering every pixel of the CCD, we measure the quad-
rature variance for all plane-wave modes, as shown in Fig. 4. Panel
(a) is the 2D distribution of the squeezing, while panel (b) shows
the anti-squeezing. The sharp borders to zero are applied in both
panels to remove artifacts caused by very low intensity. One
should expect the distributions in Fig. 4 to be flat, but in our
case, the slight difference in the phase matching of PDC in
the first and second passes leads to squeezing slightly changing
toward the center. Indeed, the intensity distribution from the sec-
ond pass is 35% broader than the one from the first pass, because
a slight misalignment of the pump beam at the mirror M2modifies
the phase-matching conditions. This effect leads to mode mis-
match, which affects mainly the squeezing distribution. The theo-
retical simulation of this behavior, shown in Figs. 4(c) and 4(d)

Fig. 3. (a) Quadrature variance in dB changes with time for a triangle-
wave scan of the piezo actuator. The traces around zero show the shot-
noise level. The two different colors correspond to the measurement on
the full frame (blue) and a single pixel (red), as shown on the intensity
distribution at the output of the interferometer in panel (b).

Fig. 4. “Optical homodyne” measurement of (a) quadrature squeezing
and (b) anti-squeezing for different plane-wave modes and (c),(d) its
theoretical simulation.
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respectively for squeezing and anti-squeezing, is in good agreement
with the experiment.

The wide-field SU(1,1) interferometer can be expanded to
place inside the interferometer an object, whose absorption or im-
age can be detected with enhanced sub-shot-noise accuracy and
tolerance to detection losses [21]. Further, the scheme presented
here can be used in information processing as it provides a “quan-
tum network,” i.e., a multimode (multipartite) quantum system,
similarly to other realizations in space [33] and frequency [34].
Indeed, the multipartite entanglement depends on the allocation
of the spatial modes specified by the user and should be readily
available with the selection in the detection process. The impor-
tant advantage introduced here is that detection losses do not con-
tribute to the measurement of the quadrature noise. In our case,
one could use a particular mode combination without worrying
about the effect of losses and simulate a linear optical network
with the change of basis.

In conclusion, we have constructed a spatially multimode
SU(1,1) interferometer by introducing a focusing component be-
tween the two OPAs. We have proved that the interferometer has
the same multimode structure (around 110 modes) as the phase
changes. The quadrature noise for the radiation inside the inter-
ferometer has been proved to be below the shot noise (with the
best squeezing level of −4.3 dB ), as required for the highly sen-
sitive detection of phase shifts. The measurement of the 2D dis-
tribution of the amplification/de-amplification level for the plane-
wave modes reveals the uniform amplification phase for the quad-
rature variance of such modes. Possible applications of such an
interferometer are the detection of the disturbance in the
OAM imparted by an object, imaging with sub-shot-noise pre-
cision, quantum information processing in a multidimensional
space, and quantum metrology in two dimensions.

Funding. Russian Science Foundation (19-42-04105); Japan
Society for the Promotion of Science.

See Supplement 1 for supporting content.
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