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We study the effect of photothermal fluctuations on squeezed states of light through the photo-refractive
effect and thermal expansion in a degenerate optical parametric oscillator �OPO�. We also discuss the effect of
the photothermal noise in various cases and how to minimize its undesirable consequences. We find that the
photothermal noise in the OPO introduces a significant amount of noise on phase squeezed beams, making
them less than ideal for low-frequency applications such as gravitational wave �GW� interferometers, whereas
amplitude squeezed beams are relatively immune to the photothermal noise and may represent the best choice
for application in GW interferometers.
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I. INTRODUCTION

Optical squeezed states are used in many areas of quan-
tum optics to improve the sensitivity of measurements to
beyond the shot-noise limit �SNL�. For example, squeezed
states can be used in interferometers �1�, spatial and spectro-
scopic measurements �2,3�, and potentially to improve the
quantum noise limit of gravitational wave �GW� interferom-
eters �4–6�. Optical parametric oscillators �OPOs� are often
the systems of choice to produce squeezed states since, in
theory, they can produce states with very high levels of
squeezing. The level of squeezing that can be produced in
these systems is limited by the introduction of noise from a
variety of sources. The noise sources that have been reported
to limit squeezing in these systems are pump noise �7–9� and
seed noise �10,11�.

In experiments reported to date, the maximum amount of
squeezing inferred before detection is around 7dB �10�. This
result, and, in most results, the maximum squeezing is mea-
sured at sideband frequencies above 1 MHz, rather than at
lower frequencies where ideally greater squeezing is pre-
dicted. There has been recent interest in producing squeezed
states at lower frequencies, primarily for use in gravitational
wave detectors. For such states the squeezing bandwidth
should cover the GW detection band �10 Hz–10 kHz�. Sev-
eral results have been published below 300 kHz �12–14� with
the lowest result 280 Hz �11�. These frequencies represent a
different regime experimentally to the majority of squeezed
state production and as such other potential limiting low-
frequency noise sources need to be considered.

One such effect which is large at low frequencies in op-
tical cavity systems is the photothermal-effect-induced noise
�15–17�. By nature, photothermal effects are important at
low frequencies and may be significant for limiting the gen-
eration of squeezed light in the GW detection band. This
effect is investigated theoretically in an OPO cavity system
in this paper.

The photothermal effect can be described as the absorp-
tion of optical power in a medium causing a temperature
change to the medium. This effect may be significant in most
nonlinear crystals since many have relatively high absorption
rates. For example, the crystal MgO:LiNbO3 has the linear
absorption rate of 4% cm−1 at 532 nm �18�. High absorption
rates coupled with the high circulating power required for
strong nonlinearity result in a large amount of optical power
absorbed into the crystal, which may cause a significant tem-
perature change. The average temperature change due to the
power absorbed in the crystal can be compensated for by
using a temperature controller, and does not pose significant
problems for most experimental systems.

Instead, we focus our investigation on the effect of pho-
tothermally induced temperature fluctuations, caused by fluc-
tuations in the circulating power in the OPO cavity. The
circulating power fluctuations could have classical and quan-
tum origins, or in the case of a shot-noise-limited system,
only quantum-mechanical origin. The photothermal noise
caused by thermal-expansive noise and thermal-refractive
noise has two degrading effects on the production of
squeezed light in the OPO. The first effect is via fluctuations
in the nonlinearity. This arises as the nonlinear strength is
temperature dependent due to the phase-matching condition.
The second effect is via optical path length fluctuations. The
temperature fluctuations cause the optical path length to
change, potentially causing a detuning of the optical cavity.
These effects appear as 1 / ��2+�T

2� in variance, where �T is
the thermal relaxation cutoff frequency of the nonlinear me-
dium, and are therefore primarily significant at low frequen-
cies.

This paper is organized as follows: In Sec. II, we write
down the equations of motion for the fundamental and
second-harmonic modes in an OPO with extra terms required
to take into account the photothermal effect. In Sec. III, we

PHYSICAL REVIEW A 72, 043819 �2005�

1050-2947/2005/72�4�/043819�15�/$23.00 ©2005 The American Physical Society043819-1

http://dx.doi.org/10.1103/PhysRevA.72.043819


quantify the fluctuating photothermal effect. In Sec. III A,
the relation between fluctuations in the power absorbed into
the crystal and in its temperature is described. In Secs. III B
and III C, the coupling of the temperature fluctuations to the
fluctuations in the nonlinear coupling strength and cavity
resonance frequencies through the photorefractive effect and
thermal expansion of the crystal is described. In Sec. IV, the
equations of motion with these photothermal contributions
are solved, and the quadrature field amplitudes in both am-
plitude and phase quadratures are studied. In Sec. V, the
squeezed and antisqueezed quadrature variances with the in-
clusion of the photothermal noise are derived and plotted. In
Sec. V A, we discuss the results for standard experimental
parameters and for the shot-noise-limited case. In Sec. V B,
we consider the effect of squeezing with the photothermal
noise on gravitational wave interferometers at low frequen-
cies. The conclusions of the paper are summarized in Sec.
VI.

II. FIELD EVOLUTION EQUATIONS IN THE
DEGENERATE OPTICAL PARAMETRIC AMPLIFIER

In this section, the model of the OPO based on the
Heisenberg equations of motion is introduced, then these
equations are linearized and additional terms for the photo-
thermal fluctuations are introduced. This sets up the formal-
ism to include the photothermal fluctuations which are de-
scribed in terms of the input fields in the following section.
The modes can then be out-coupled and the variances calcu-
lated.

Starting from the quantum Langevin equation, the equa-
tions of motion for the intracavity fields at the fundamental

frequency a and at the second-harmonic frequency b are
given by �19�

ȧ = − �i�a
c + �a

tot�a + �*a†b + �2�a
inAine

−i�at + �2�a
out�va

out

+ �2�a
sc�va

sc + �2�a
abs�va

abs, �1�

ḃ = − �i�b
c + �b

tot�b −
1

2
�a2 + �2�b

inBine
−i�bt + �2�b

out�vb
out

+ �2�b
sc�vb

sc + �2�b
abs�vb

abs. �2�

The fields and coupling rates here are shown schematically
in Fig. 1. Ain and Bin are the fundamental and second-
harmonic input fields to the cavity at frequencies �a and �b,
respectively ��b=2�a�. � is the nonlinear coupling constant.
�a

c and �b
c are the cavity resonance frequencies of the funda-

mental and second-harmonic fields. �a,b
in , �a,b

out, �a,b
sc , and �a,b

abs

are the cavity damping constants associated with the input-
coupling, output-coupling, intracavity scattering, and intra-
cavity absorption at both frequencies. �va,b

out, �va,b
sc , and �va,b

abs

are the associated vacuum fields that couple in. The follow-
ing commutation relations are satisfied:

�s,s� = 0, �s,s†� = 1, �3�

for s=Ain , Bin , �va
out , �vb

out , �va
sc , �vb

sc , �va
abs, and �vb

abs,
and all others vanish.

Transforming to the rotating frame of each field with a
→ei�ata , b→ei�btb, and similarly for the input fields, the
equations of motion become

ȧ = − �i�a
det + �a

tot�a + �*a†b + �2�a
inAin + �2�a

out�va
out

+ �2�a
sc�va

sc + �2�a
abs�va

abs, �4�

ḃ = − �i�b
det + �b

tot�b −
1

2
�a2 + �2�b

inBin + �2�b
out�vb

out

+ �2�b
sc�vb

sc + �2�b
abs�vb

abs, �5�

where the cavity detunings �a
det=�a

c −�a and �b
det=�b

c −�b.
The most common method of generating the analytic form

of squeezed quadrature variances is to expand the operators
about their steady-state values and then linearize the result-
ing expressions to first order in the fluctuation terms �20�. To
linearize the equations of motion, the following substitution
for the annihilation and creation operators are used:

a = ā + �a, a† = ā* + �a†, �6�

FIG. 1. �Color online� A schematic of the OPO cavity. Ain and
Bin are the input fields to the OPO cavity, Aout and Bout are the
output fields, and a and b are the intracavity fields at the fundamen-
tal and second-harmonic frequencies, respectively. �a,b

in , �a,b
out, �a,b

sc ,
and �a,b

abs are the cavity damping constants associated with the input-
coupling, output-coupling, intracavity scattering, and intracavity ab-
sorption, respectively. The index �a ,b� refers to the fundamental
and second-harmonic frequencies, respectively. �va,b

out, �va,b
sc , and

�va,b
abs are the associated vacuum fields that couple in.
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b = b̄ + �b, b† = b̄* + �b†, �7�

and similarly for the input fields Ain , Bin. x̄ for x=a , b is the
complex expectation value �x� and �x is the operator for the
fluctuations of x so that ��x�=0.

To obtain the equations of motion for the fluctuating com-
ponents, we consider the following fluctuations due to the
photothermal effect in the crystal: �i� fluctuations in the reso-
nance frequencies of the cavity due to fluctuations in the
length of the cavity �assuming that the laser frequency is
perfectly stable�, and �ii� fluctuations in the nonlinear cou-
pling constant due to fluctuations in the temperature of the
crystal and in the length of the nonlinear region. We then
make the following substitutions:

�a
det = �̄a

det + ��a
det, �b

det = �̄b
det + ��b

det, �8�

��a
det and �b

det are real� ,

� = �̄ + ��, �* = �̄* + ��†. �9�

The fluctuation terms are obtained by taking the fluctuation
components in Eqs. �4� and �5�,

�ȧ = iā��a
det + �i�̄a

det − �a
tot��a + �̄*b̄�a† + �̄*ā*�b + ā*b̄��†

+ �2�a
in�Ain + �2�a

out�va
out + �2�a

sc�va
sc + �2�a

abs�va
abs,

�10�

�ḃ = ib̄��b
det + �i�̄b

det − �b
tot��b − �̄ā�a −

1

2
ā2�� + �2�b

in�Bin

+ �2�b
out�vb

out + �2�b
sc�vb

sc + �2�b
abs�vb

abs. �11�

The coherent components of the equations of motion are
obtained similarly by taking the coherent terms in Eqs. �4�
and �5� in the steady state, assuming that the pump field is

undepleted ��ā2���b
inB̄in�,

0 = �i�̄a
det − �a

tot�ā + �̄*ā*b̄ + �2�a
inĀin, �12�

0 � �i�̄b
det − �b

tot�b̄ + �2�b
inB̄in, �13�

from which we find the coherent intracavity field amplitudes,

ā =
�2�a

inĀin��i�̄a
det + �a

tot� + �̄*	b̄	ei��b−2�a��

�a
tot2 + �̄a

det2 − 	�̄	2	b̄	2
, �14�

b̄ �
�2�b

in

�b
tot − i�̄b

det B̄in, �15�

where �a and �b are the phases of the fundamental

and second-harmonic input fields such that Āin= 	Āin	ei�a and

B̄in= 	B̄in	ei�b. The relative phase of the fundamental and
second-harmonic fields determines whether the fundamental
field is parametrically amplified or de-amplified.

Equations �10� and �11� and their correlated fluctuation
operators can be rewritten in a compact form,

Ẋc = McXc + MinXin + MoutVout + MscVsc + MabsVabs + Xpt,

�16�

where the intracavity and input field vectors are defined by

Xc 
�
�a

�a†

�b

�b†
�, Xin 
�

�Ain

�Ain
†

�Bin

�Bin
†
� , �17�

the vacuum field vectors associated with the output coupling,
absorption loss, and scattering loss are respectively defined
by

Vout 
�
�va

out

�va
out†

�vb
out

�vb
out†
�, Vabs 
�

�va
abs

�va
abs†

�vb
abs

�vb
abs†
� ,

Vsc 
�
�va

sc

�va
sc†

�vb
sc

�vb
sc†
� , �18�

and the field vector due to photothermal fluctuations Xpt is
split into the fluctuating nonlinear coupling constant compo-
nent and the fluctuating cavity detuning component,

Xpt = X� + Xw, �19�

where

X� =�
ā*b̄��†

āb̄*��

−
1

2
ā2��

−
1

2
ā*2��†

� , Xw =�
iā�wa

det

− iā*�wa
det†

ib̄�wb
det

− ib̄*�wb
det†
� . �20�

�� , ��det, and their adjoints will be derived in the following
section. The coupling matrices associated with the intracav-
ity field, input coupling, output coupling, absorption, and
scattering are respectively defined by
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Mc 
�
i�̄a

det − �a
tot

�̄*b̄ �̄*ā* 0

�̄b̄* − i�a
det − �a

tot 0 �̄ā

− �̄ā 0 i�b
det − �b

tot 0

0 − �̄*ā* 0 − i�b
tot − �b

tot
� , Min 
�

�2�a
in 0 0 0

0 �2�a
in 0 0

0 0 �2�b
in 0

0 0 0 �2�b
in
� ,

Mout 
�
�2�a

out 0 0 0

0 �2�a
out 0 0

0 0 �2�b
out 0

0 0 0 �2�b
out
� , Mabs 
�

�2�a
abs 0 0 0

0 �2�a
abs 0 0

0 0 �2�b
abs 0

0 0 0 �2�b
abs
� ,

Msc 
�
�2�a

sc 0 0 0

0 �2�a
sc 0 0

0 0 �2�b
sc 0

0 0 0 �2�b
sc
� . �21�

In terms of frequency components, defined by �19�

Q̃��� = 
−�

�

Q�t�ei�tdt , �22�

Eq. �16� becomes

i�X̃c = McX̃c + MinX̃in + MoutṼout + MscṼsc + MabsṼabs + X̃pt,

�23�

where � is the sideband frequency relative to �a. The last

field vector X̃pt will be derived in the next section. The com-
mutation relations in Eq. �3� imply

�s̃���, s̃����� = 0, �s̃���, s̃†����� = ��� − ��� , �24�

for s=�Ain , �Bin , �va
out , �vb

out , �va
sc , �vb

sc , �va
abs, and �vb

abs,
and the commutation relations between any two different
states is zero.

III. PHOTOTHERMAL NOISE

Throughout this paper, we consider only type-I phase
matching which is simple and has been shown to generate
squeezing at low frequencies. The photothermal noise is de-
scribed as follows: squeezing is degraded by fluctuations in
�i� the nonlinear coupling strength and �ii� the cavity reso-
nance frequencies, caused by temperature fluctuations due to
fluctuations in the photon power absorbed in the crystal.

Since the nonlinear coupling strength is a function of the
refractive index along the ordinary and extraordinary axes
and the crystal length, fluctuations in the temperature of the
crystal cause fluctuations in the nonlinear coupling strength.
In addition, since the cavity resonance frequencies are func-
tions of the crystal length at both the fundamental and
second-harmonic frequencies, fluctuations in the crystal’s
temperature cause fluctuations in the resonance frequencies.
In general, nonlinear crystals are absorptive and therefore the
fluctuations in the crystal’s temperature are directly coupled
with the fluctuations in the amplitudes of the input fields.
Here we do not consider the three-dimensional expansion of
the crystal.

A. Power absorption in the crystal

The fluctuations in the temperature of the crystal are due
to the fluctuations in the optical power absorbed into the
crystal, which is directly related to the intracavity field fluc-
tuations. Taking into consideration that the absorption occurs
over the entire length of the crystal, the total absorbed power
is given by

Pabs = P̄abs + �Pabs = 	�aAabs
† Aabs + 	�bBabs

† Babs

� 	�a�	Āabs	2 + 	Āabs	��Aabs
† + �Aabs�� + 	�b�	B̄abs	2

+ 	B̄abs	��Babs
† + �Babs�� , �25�

where the fluctuation terms are

�Aabs = �2�abs
a �a − �vabs

a ,

�Aabs
† = �2�a

abs�a† − �va
abs†, �26�
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�Babs = �2�abs
b �b − �vabs

b ,

�Babs
† = �2�b

abs�b† − �vb
abs†, �27�

and the coherent terms are

Āabs = �2�a
absā, Āabs

* = �2�a
absā*, �28�

B̄abs = �2�b
absb̄, B̄abs

* = �2�b
absb̄*. �29�

Hence we find the power fluctuation term �Pabs,

�Pabs = 	�a	Āabs	��Aabs + �Aabs
† � + 	�b	B̄abs	��Babs + �Babs

† �

=	�a
�2�a

abs	ā	��2�a
abs��a + �a†� − ��va

abs + �va
abs†��

+ 	�b
�2�b

abs	b̄	��2�b
abs��b + �b†� − ��vb

abs + �vb
abs†�� .

�30�

Assuming that the power absorption in the crystal is uni-
form over the crystal length, it is directly coupled with
change in the crystal’s temperature through the equation �21�

C
V��Ṫ +
�T

�T
� = �Pabs, �31�

where 
 is the crystal density, V is the mode volume, C is the
specific heat, and �T is the thermal relaxation time of the
crystal. �T sets the critical frequency �adiabatic limit� for the
response to the fluctuations in the optical power and is there-
fore given by �17,22�

�T =
1

�T
�

C
r0
2

�
, �32�

where � is the thermal conductivity of the crystal and r0 is
the radius of the nonlinear interaction between the seed and
pump fields, assuming they have a Gaussian transverse pro-
file and the interaction distance is within the Rayleigh range
of the fields. Here, we have assumed that the radius of the
beams is much smaller than the length of the crystal and the
cross section of the beams is much smaller than the cross
section of the crystal. We then find the associated tempera-

ture fluctuations �T̃ in the frequency domain,

�T̃ =
�P̃abs

�i� + �T�C
V
. �33�

B. Fluctuations in the nonlinear coupling strength

In this section, the fluctuations in the nonlinear coupling
strength are calculated for given temperature fluctuations.
This result will then be used in Eq. �23�.

The nonlinear coupling constant � is a function of the
phase mismatch parameter k defined by k=2ka−kb,

� = �0zei�kz/2�sinc �kz

2
� , �34�

where �0 is a constant. The refractive index of a nonlinear
crystal such as magnesium-oxide doped lithium-niobate
MgO:LiNbO3 is dependent on the temperature through the
photorefractive effect, which is used for achieving type-I
phase matching. The temperature and wavelength depen-
dence of the phase-matching condition for MgO:LiNbO3 is
described by the Sellmeier equation �23�, which can be ap-
proximated around the optimum temperature T0 at the fun-
damental frequency

k = ��T − T0� , �35�

where � is a constant whose value depends on the crystal’s
properties, and T is the crystal’s temperature.

The fluctuations in the crystal’s temperature cause the
fluctuations in the nonlinear coupling strength �� through the
photorefractive effect and thermal expansion,

�� =
��

�k
�k +

��

�z
�z

= � ��

�k

dk

dT
+

��

�z

dz

dT
��T = �� ��

�k
�� + � ��

�z
��z��T .

�36�

Here we have used the Selmeier equation and the thermal-
expansion equation,

dk

dT
= � , �37�

dz

dT
= �z , �38�

where � is the linear thermal-expansion coefficient. From
Eq. �34� we obtain

��

�k
= �� iz

2
−

1

k
+

z

2
cot

kz

2
� , �39�

��

�z
= �

z

2
�i + cot

kz

2
� . �40�

Substituting Eq. �33� into Eq. �36�, we express the effect
of the fluctuating nonlinear coupling constant in terms of Xc
and Vabs,

X̃� = M�
cX̃c + M�

absṼabs, �41�

where
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M�
c 


1

i� + �T�
ā*b̄Ca

*�2�a
abs ā*b̄Ca

*�2�a
abs ā*b̄Cb

*�2�b
abs ā*b̄Cb

*�2�b
abs

āb̄*Ca
�2�a

abs āb̄*Ca
�2�a

abs āb̄*Cb
�2�b

abs āb̄*Cb
�2�b

abs

−
1

2
ā2Ca

�2�a
abs −

1

2
ā2Ca

�2�a
abs −

1

2
ā2Cb

�2�b
abs −

1

2
ā2Cb

�2�b
abs

−
1

2
ā*2Ca

*�2�a
abs −

1

2
ā*2Ca

*�2�a
abs −

1

2
ā*2Cb

*�2�b
abs −

1

2
ā*2Cb

*�2�b
abs
� , �42�

M�
abs 


1

i� + �T�
− ā*b̄Ca

* − ā*b̄Ca
* − ā*b̄Cb

* − ā*b̄Cb
*

− āb̄*Ca − āb̄*Ca − āb̄*Cb − āb̄*Cb

1

2
ā2Ca

1

2
ā2Ca

1

2
ā2Cb

1

2
ā2Cb

1

2
ā*2Ca

* 1

2
ā*2Ca

* 1

2
ā*2Cb

* 1

2
ā*2Cb

*
� ,

�43�

and

Ca =
	�a

�2�a
abs	ā	

C
V
�� ��

�k
�� + � ��

�z
��z� , �44�

Cb =
	�b

�2�b
abs	b̄	

C
V
�� ��

�k
�� + � ��

�z
��z� . �45�

C. Fluctuations in the cavity detunings

In this section, the fluctuations in the optical path length
are calculated for given temperature fluctuations. This result
will then be used in Eq. �23�.

The photothermal fluctuations couple to the fluctuations
in the optical path length from the following two mecha-
nisms: the photorefractive effect and thermal expansion. The
fluctuations in the optical path length can be converted into
cavity resonance frequency fluctuations, using �24�

��a
c = −

2�c

�a
� 1

na

dna

dT
+ �a��T , �46�

��b
c = −

2�c

�b
� 1

nb

dnb

dT
+ �b��T , �47�

and therefore, assuming that the laser frequencies are stable,
the cavity detuning fluctuations are ��a

det=��a
c and ��b

det

=��b
c.

Substituting Eq. �33� into Eq. �46�, we similarly write the
effect of the fluctuating cavity detuning component in terms
of Xc and Vabs,

X̃� = M�
c X̃c + M�

absṼabs, �48�

where

M�
c 


1

i� + �T�
iāKa�a

�2�a
abs iāKa�a

�2�a
abs iāKa�b

�2�b
abs iāKa�b

�2�b
abs

− iā*Ka�a
�2�a

abs − iā*Ka�a
�2�a

abs − iā*Ka�b
�2�b

abs − iā*Ka�b
�2�b

abs

ib̄Kb�a
�2�a

abs ib̄Kb�a
�2�a

abs ib̄Kb�b
�2�b

abs ib̄Kb�b
�2�b

abs

− ib̄*Kb�a
�2�a

abs − ib̄*Kb�a
�2�a

abs − ib̄*Kb�b
�2�b

abs − ib̄*Kb�b
�2�b

abs
� , �49�

M�
abs 


1

i� + �T�
− iāKa�a − iāKa�a − iāKa�b − iāKa�b

iā*Ka�a iā*Ka�a iā*Ka�b iā*Ka�b

− ib̄Kb�a − ib̄Kb�a − ib̄Kb�b − ib̄Kb�b

ib̄*Kb�a ib̄*Kb�a ib̄*Kb�b ib̄*Kb�b

� , �50�
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where

�a =
	�a

�2�a
abs	ā	

C
V
, �51�

�b =
	�b

�2�b
abs	b̄	

C
V
, �52�

Ka =
2�c

�a
� 1

na

dna

dT
+ �a� , �53�

Kb =
2�c

�b
� 1

nb

dnb

dT
+ �b� . �54�

IV. QUADRATURE FIELD AMPLITUDES
WITH THE PHOTOTHERMAL NOISE

Now that we have described the equations of motion, the
absorbed power fluctuations, and the associated fluctuations
in the nonlinear coupling strength and cavity detunings, we
are in a position to put these equations together and solve the
equations of motion with the photothermal effect. We also
discuss a limiting case in which the quadrature variances can
be approximated to simple analytic forms under realistic as-
sumptions.

Substituting Eqs. �41� and �48� into Eq. �19� yields

X̃pt = �M�
c + M�

c �X̃c + �M�
abs + M�

abs�Ṽabs, �55�

and substituting this into Eq. �23� gives

�i�I − Mc − M�
c − M�

c �X̃c = MinX̃in + MoutṼout + MscṼsc

+ �Mabs + M�
abs + M�

abs�Ṽabs,

�56�

where I is the identity matrix. We thus find the intracavity
field fluctuations,

X̃c = �i�I − Mc − M�
c − M�

c �−1�MinX̃in + MoutṼout + MscṼsc

+ �Mabs + M�
abs + M�

abs�Ṽabs� . �57�

Defining the extracavity field vector by �19�

X̃out 
�
�Ãout

�Ãout
†

�B̃out

�B̃out
†
� , �58�

we find

X̃out = MoutX̃c − Ṽout = Mout�i�I − Mc − M�
c − M�

c �−1MinX̃in

+ �Mout�i�I − Mc − M�
c − M�

c �−1Mout − I�Ṽout

+ Mout�i�I − Mc − M�
c − M�

c �−1MscṼsc + Mout�i�I

− Mc − M�
c − M�

c �−1�Mabs + M�
abs + M�

abs�Ṽabs. �59�

It is important to note that as the photothermal effect is
turned off by setting ��a

abs→0 and ��b
abs→0, the photother-

mal coupling matrices M�
c, M�

abs, M�
c , and M�

abs as well as
Mabs all become zero, and then Eq. �58� reduces to the solu-
tions of the field evolution equations without the photother-
mal effect,

X̃out = Mout�i�I − Mc�−1MinX̃in

+ �Mout�i�I − Mc�−1Mout − I�Ṽout �60�

+ Mout�i�I − Mc�−1MscṼsc. �61�

We define the amplitude and phase quadrature field fluc-
tuation amplitudes in the frequency domain relative to the
fundamental frequency, respectively,

�X̃s
1��� 
 �s̃��a + �� + �s̃†��a − �� , �62�

�X̃s
2��� 
 i��s̃��a + �� − �s̃†��a − ��� , �63�

for s=Ain , Aout , Bin , Bout , va
out , vb

out , va
sc , vb

sc , va
abs, and

vb
abs. The commutation relations �24� imply the following

values for the commutators of the quadrature field ampli-
tudes and their adjoints:

��X̃s
1,�X̃s�

2†� = − ��X̃s
2,�X̃s�

1†� = − 2i��� − ��� �64�

for s=Ain , Aout , Bin , Bout , va
out , vb

out , va
sc , vb

sc , va
abs, and

vb
abs, and all others vanish.

It is convenient to express Eq. �17� in terms of the quadra-
ture field amplitudes,

X̃out
� = �X̃out, X̃in

� = �X̃in, Ṽout
� = �Ṽout,

Ṽsc
� = �Ṽsc, Ṽabs

� = �Ṽabs, �65�

where

� 
�
1 1 0 0

i − i 0 0

0 0 1 1

0 0 i − i
� , �66�

and

X̃out
� 
�

�X̃Aout

1

�X̃Aout

2

�X̃Bout

1

�X̃Bout

2
� , X̃in

� 
�
�X̃Ain

1

�X̃Ain

2

�X̃Bin

1

�X̃Bin

2
� ,
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Ṽout
� 
�

�X̃va
out

1

�X̃va
out

2

�X̃vb
out

1

�X̃vb
out

2
� , Ṽsc

� 
�
�X̃va

sc
1

�X̃va
sc

2

�X̃vb
sc

1

�X̃vb
sc

2
� ,

Ṽabs
� 
�

�X̃va
abs

1

�X̃va
abs

2

�X̃vb
abs

1

�X̃vb
abs

2
� . �67�

Equation �58� can be rewritten as

X̃out
� = �inX̃in

� + �outṼout
� + �scṼsc

� + �absṼabs
� , �68�

where the quadrature field coupling matrices are defined by

�in 
 �Mout�i�I − Mc − M�
c − M�

c �−1Min�
−1,

�out 
 ��Mout�i�I − Mc − M�
c − M�

c �−1Mout − I��−1,

�sc 
 �Mout�i�I − Mc − M�
c − M�

c �−1Msc�
−1,

�abs 
 �Mout�i�I − Mc − M�
c − M�

c �−1�Mabs + M�
abs

+ M�
abs��−1. �69�

Normalized amplitude and phase quadrature variances are
given by �19�

Ṽs
1��� = �	�X̃s

1���	2�, Ṽs
2��� = �	�X̃s

2���	2� , �70�

for s=Aout , Bout , Ain , Bin , va
out , vb

out , va
sc , vb

sc , va
abs, and

vb
abs, respectively. The normalized quadrature variances of

the fundamental output field can be written as a linear com-

bination of ṼAin

1,2 , ṼBin

1,2 , Ṽva
out

1,2 , Ṽvb
out

1,2 , Ṽva
sc

1,2 , Ṽvb
sc

1,2 , Ṽva
abs

1,2 , and

Ṽvb
abs

1,2 �25�. Since the vacuum fields that couple in at the op-

tical losses are in the minimum uncertainty state,

Ṽva
out

1,2 = Ṽvb
out

1,2 = Ṽva
sc

1,2 = Ṽvb
sc

1,2 = Ṽva
abs

1,2 = Ṽvb
abs

1,2 = 1. �71�

Therefore we find the normalized amplitude and phase
quadrature variances of the fundamental output field, respec-
tively,

ṼAout

1 ��� = 	�in
�11����	2ṼAin

1 ��� + 	�in
�12����	2ṼAin

2 ���

+ 	�in
�13����	2ṼBin

1 ��� + 	�in
�14����	2ṼBin

2 ���

+ �
j=1

4

�	�out
�1j����	2 + 	�sc

�1j����	2 + 	�abs
�1j����	2� ,

�72�

ṼAout

2 ��� = 	�in
�21����	2ṼAin

1 ��� + 	�in
�22����	2ṼAin

2 ���

+ 	�in
�23����	2ṼBin

1 ��� + 	�in
�24����	2ṼBin

2 ���

+ �
j=1

4

�	�out
�2j����	2 + 	�sc

�2j����	2 + 	�abs
�2j����	2� ,

�73�

where the superscripts �ij� of �’s denote the matrix ele-
ments. �in

�11� and �in
�13� are the amplitude noise coupling con-

stants of the seed or pump fields, �in
�12� and �in

�14� are the
phase noise coupling constants of the seed and pump fields,
respectively. The rest of the �’s are the amplitude and phase
noise coupling constants of the vacuum fields at the funda-
mental and second-harmonic frequencies. Note that the nor-
malized quadrature variances are completely characterized
by the normalized quadrature variances of the two input and
vacuum fields and the coupling constants.

If the seed and pump fields are shot-noise limited, ṼAin

1,2

= ṼBin

1,2=1, and the quadrature variances reduce to

ṼAout

1 ��� = �
j=1

4

�	�in
�1j����	2 + 	�out

�1j����	2 + 	�sc
�1j����	2

+ 	�abs
�1j����	2� , �74�

ṼAout

2 ��� = �
j=1

4

�	�in
�2j����	2 + 	�out

�2j����	2 + 	�sc
�2j����	2

+ 	�abs
�2j����	2� . �75�

We now turn to the discussion of a limiting case to obtain
simple analytic forms by making the following assumptions
that are applicable to most practical cases of squeezing: �i�
the pump noise is comparable to the seed noise, �ii� the fun-
damental intracavity field is much weaker than the second-
harmonic intracavity field �	a	� 	b	�, �iii� there is no intra-
cavity scattering, �iv� there are no average cavity detunings
at both the fundamental and second-harmonic frequencies,
�v� the frequency of interest is within the linewidth of the
OPO cavity, and �vi� we are only interested in maximum
phase squeezing ��b=0� or maximum amplitude squeezing

��b=�� so that any term proportional to b̄− b̄* is zero. Under
these assumptions, we can make the following approxima-
tions.

For the amplitude quadrature variance,
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�in
�11� �

��a
in�a

out�2�a
tot + �̄b̄* + �̄*b̄�

�a
tot2 − 	�̄	2	b̄	2

, �in
�12� �

i��a
in�a

out��̄*b̄ − �̄b̄*�

�a
tot2 − 	�̄	2	b̄	2

,

�in
�13� � −

1

� − i�T

2�2i��a
out�b

abs�b
in�āb̄*Cb��a

tot + �̄*b̄� + ā*b̄Cb
*��a

tot + �̄b̄*��

�b
tot��a

tot2 − 	�̄	2	b̄	2�
,

�in
�14� � 0,

�out
�11� �

− �a
tot2 + 2�a

out�a
tot + �a

out��̄b̄* + �̄*b̄� + 	�̄	2	b̄	2

�a
tot2 − 	�̄	2	b̄	2

,

�out
�12� �

i�a
out��̄*b̄ − �̄b̄*�

�a
tot2 − 	�̄	2	b̄	2

,

�out
�13� � −

1

� − i�T

2�2i��a
out�b

abs�b
out�āb̄*Cb��a

tot + �̄*b̄� + ā*b̄Cb
*��a

tot + �̄b̄*��

�b
tot��a

tot2 − 	�̄	2	b̄	2�
,

�out
�14� � 0,

�abs
�11� �

��a
abs�a

out�2�a
tot + �̄b̄* + �̄*b̄�

�a
tot2 − 	�̄	2	b̄	2

, �abs
�12� �

i��a
abs�a

out��̄*b̄ − �̄b̄*�

�a
tot2 − 	�̄	2	b̄	2

,

�abs
�13� � −

1

� − i�T

i�2�a
out�2�b

abs − �b
tot��āb̄*Cb��a

tot + �̄*b̄� + ā*b̄Cb
*��a

tot + �̄b̄*��

�b
tot��a

tot2 − 	�̄	2	b̄	2�
,

�abs
�14� � 0,

�sc
�11� � 0, �sc

�12� � 0, �sc
�13� � 0, �sc

�14� � 0. �76�

For the phase quadrature variance,

�in
�21� �

i��a
in�a

out��̄*b̄ − �̄b̄*�

�a
tot2 − 	�̄	2	b̄	2

, �in
�22� �

��a
in�a

out�2�a
tot − �̄b̄* − �̄*b̄�

�a
tot2 − 	�̄	2	b̄	2

,

�in
�23� � −

1

� − i�T

2�2��a
out�b

abs�b
in�āb̄*Cb��a

tot − �̄*b̄� − ā*b̄Cb
*��a

tot − �̄b̄*��

�b
tot��a

tot2 − 	�̄	2	b̄	2�
,

�in
�24� � 0,

�out
�21� �

i�a
out��̄*b̄ − �̄b̄*�

�a
tot2 − 	�̄	2	b̄	2

,

�out
�22� �

− �a
tot2 + 2�a

out�a
tot − �a

out��̄b̄* + �̄*b̄� + 	�̄	2	b̄	2

�a
tot2 − 	�̄	2	b̄	2

,

�out
�23� � −

1

� − i�T

2�2��a
out�b

abs�b
out�āb̄*Cb��a

tot − �̄*b̄� − ā*b̄Cb
*��a

tot − �̄b̄*��

�b
tot��a

tot2 − 	�̄	2	b̄	2�
,
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�out
�24� � 0,

�abs
�21� �

i��a
abs�a

out��̄*b̄ − �̄b̄*�

�a
tot2 − 	�̄	2	b̄	2

, �abs
�22� �

��a
abs�a

out�2�a
tot − �̄b̄* − �̄*b̄�

�a
tot2 − 	�̄	2	b̄	2

,

�abs
�23� � −

1

� − i�T

�2�a
out�2�b

abs − �b
tot��āb̄*Cb��a

tot − �̄*b̄� − ā*b̄Cb
*��a

tot − �̄b̄*��

�b
tot��a

tot2 − 	�̄	2	b̄	2�
,

�abs
�24� � 0,

�sc
�21� � 0, �sc

�22� � 0, �sc
�23� � 0, �sc

�24� � 0. �77�

Note that in this limiting case, the noise coupling con-
stants, �in

13, �out
13 , �abs

13 , �in
23, �out

23 , and �abs
23 , have the fre-

quency dependence of 1 / ��− i�T�, and therefore they in-
crease as the frequency decreases for ���T, degrading the
squeezing level at low frequencies. In Sec. V, we will discuss
which couping constants are dominant at high frequencies,
low frequencies, and intermediate frequencies.

V. RESULTS

In this section, we discuss various cases of the influence
of the photothermal noise on squeezed quadrature variances
in both amplitude and phase quadratures. The most signifi-
cant photothermal effects are seen in the phase quadrature,
and therefore we mainly discuss quadrature variances in the
phase quadrature. Section V A presents such results. Section
V B discusses the effect of squeezing with the photothermal
noise on a conventional gravitational wave interferometer
when a photothermal-noise-limited squeezed field is injected
into it. The following plots are obtained from the exact nor-
malized quadrature variances in Eqs. �72� and �73� with re-
alistic values for OPO parameters, which are listed in Table
I. The effect of green-induced infrared absorption �26� is not
considered in this paper.

A. Normalized quadrature variances
with the photothermal effect

The amplitude quadrature is relatively immune to the pho-
tothermal noise for the following reasons. The intracavity
fundamental field is deamplified in the degenerate parametric
oscillation, and thus the noise coupling is smaller than in the
phase squeezing case. Moreover, in the ideal case, the system
is held on resonance and operated at the phase-matched tem-
perature. The detuning fluctuations do not couple into the
amplitude quadrature for a cavity on resonance since the fre-
quency derivative of the amplitude response of the cavity is
zero. Figure 2 compares the effect of the photothermal noise
between the amplitude and phase squeezing cases. �Note that
they are not obtained simultaneously from the OPO; different
pump phases are required.� The photothermal noise is there-

fore significant in the phase quadrature and relatively unim-
portant in the amplitude quadrature, in most practical cases.
In the absence of the photothermal noise, the normalized
quadrature variance would be flat within the OPO linewidth.

As can be seen in Figs. 2–5 in which the normalized
quadrature variances versus frequency are plotted, the
squeezing level is cut off at frequencies below 10 kHz �de-
pending on the OPO cavity parameters� due to the photother-
mal noise which has 1/ ��2+�T

2� roll-off in variance. Param-
eter values used for the figures are summarized in Table I.
The high-frequency cutoff is due to the linewidth of the OPO
cavity below which the seed field is squeezed. At frequencies
above the high cutoff frequency, �out

�11� and �out
�21� dominate in

the amplitude and phase quadratures, respectively. At fre-
quencies between the two cutoff frequencies, �in

�11�, �out
�11�,

�abs
�11�, �in

�22�, �out
�22�, and �abs

�22� dominate �depending on the
OPO cavity parameters� in the amplitude and phase quadra-
tures, respectively. The photothermal cutoff frequency is
greater than the adiabatic limit �T in most practical cases,
and therefore at low frequencies above �T, �in

�13�, �abs
�13�,

�in
�23�, and �abs

�23� that have the frequency dependence of 1 /�
dominate �depending on the OPO cavity parameters� in the
amplitude and phase quadratures, respectively, as can easily
be seen in Eqs. �76� and �77�. At frequencies below the adia-
batic limit �T, the quadrature variances become flat. The
domination of these �’s in each frequency band is valid
regardless of which quadrature variance is squeezed or anti-
squeezed.

Figure 3 shows the normalized quadrature variance of a
phase squeezed state as a function of frequency for various
pump powers. As the pump power approaches the OPO
threshold, the squeezing level at high frequencies increases,
but higher pump power also increases the photothermal noise
contribution. The photothermal noise is largest at low fre-
quencies and limits squeezing to occur only at higher fre-
quencies where the photothermal noise is small. The increase
in the photothermal noise as the pump power approaches the
OPO threshold is also attributable to the increase in the fun-
damental field amplitude via high parametric gain which in-
creases the photothermal noise coupling. Squeezing at lower
frequencies can be acquired at the expense of the broadband
level of squeezing.
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Figure 4 shows the normalized quadrature variance of a
phase squeezed state as a function of frequency for various
seed powers. Since the coupling of the photothermal effect to
the quadrature variances is proportional to the seed power,
the photothermal noise contribution limits squeezing to
higher frequencies as the seed power increases. Hence the
seed power should be set as small as possible to avoid the
photothermal noise. However, the reduction of the seed
power leads to difficulties in obtaining an optical signal for
controlling the phase of the seed. Therefore, in practice, the
seed power should be properly chosen such that it optimizes
control stability and the frequency of interest is above the
photothermal cutoff frerequency. A crystal with a smaller
absorption rate can also reduce the pump noise coupling and
therefore the photothermal noise. Its effect appears similar to
the effect of a lower seed power as shown in Fig. 4.

Figure 5 shows the normalized quadrature variance of a
phase squeezed state as a function of frequency for various
pump amplitude noise levels. As the pump noise increases,
the overall squeezing level also decreases due to the direct
coupling of the pump noise to the quadrature variances
�7–9�. At the same time, the photothermal noise induced by

TABLE I. OPO cavity parameters.

Parameter Symbol Value Units

Fundamental wavelength �a 1064 nm

Second-harmonic wavelength �b 532 nm

Reflectivity of input coupler at fundamental
frequency

Ra
in 99.96 %

Reflectivity of output coupler at fundamental
frequency

Ra
out 95.6 %

Reflectivity of input coupler at second-harmonic
frequency

Rb
in 4.0 %

Reflectivity of output coupler at second-harmonic
frequency

Rb
out 99.96 %

Absorption rate at fundamental frequency �a
abs 0.1 %/cm

Scattering rate at fundamental frequency �a
sc 0.02 %/cm

Absorption rate at Second-Harmonic Frequency �b
abs 4.0 %/cm

Scattering rate at Second-Harmonic Frequency �b
sc 0.5 %/cm

Crystal length z 7.5 mm

Nonlinear coupling strength �0 800 000 1/m/s

Phase-matched refractive index n 2.233

Specific heat of crystal C 633 J /kg/K

Density of crystal 
 4.648 g/cm3

Thermal conductivity of crystal � 4 W/K/m

Radius of nonlinear interaction r0 36 �m

Phase mismatch constant � 749 1/m/K

Thermal expansion constant in ordinary axis �a 5�10−6 1/K

Thermal expansion constant in extraordinary axis �b 5�10−6 1/K

Photorefractive constant in ordinary axis dna /dT 3.3�10−6 1/K

Photorefractive constant in extraordinary axis dnb /dT 37.0�10−6 1/K

Temperature offset T 0.001 K

Cavity detuning at fundamental frequency �a
det 0 Hz

Cavity detuning at second-harmonic frequency �b
det 0 Hz

FIG. 2. �Color online� The comparison of normalized amplitude
and phase quadrature variances relative to the shot noise vs fre-
quency with the photothermal effect. The amplitude quadrature is
relatively immune to the photothermal noise in most practical cases.
The seed power is 1 mW. The pump power is 0.5Pth. The input
fields are shot-noise limited.

PHOTOTHERMAL FLUCTUATIONS AS A FUNDAMENTAL… PHYSICAL REVIEW A 72, 043819 �2005�

043819-11



the pump noise also increases, driving up the photothermal
noise limited frequency.

Figure 6 shows the quadrature variance of a phase
squeezed state as a function of pump or seed power for vari-
ous frequencies. Without the photothermal effect, the maxi-
mum squeezing would be achieved at the OPO threshold. In
the presence of the photothermal noise, the squeezing level
starts to degrade as the pump power approaches the OPO
threshold. The photothermal noise can also be minimized by
reducing the seed power.

In summary, the undesirable consequences of the photo-
thermal noise can be minimized by satisfiying the following
conditions: �i� a low seed power, �ii� a quiet pump field, �iii�
a crystal with a low absorption rate, and �iv� squeeze the
amplitude quadrature variance rather than the phase quadra-
ture variance.

B. Effect of the photothermal noise on gravitational wave
interferometers

One primary purpose of low-frequency squeezing is to
improve the sensitivity of GW interferometers in the GW
band which is typically 10–10 000 Hz �4�. To implement it, a
low-frequency squeezed field needs to be prepared for injec-
tion to the dark port of the GW interferometers. However, as
discussed in Sec. V A, the squeezing level of phase-squeezed
light is limited by the photothermal noise at low frequencies,
and hence it places an important limit on the use of squeezed
light in the GW interferometers.

For a conventional GW interferometer with arm lengths L
and mirror masses m, the spectral density of the GW noise
when a realistic squeezed field is injected to the dark port is
given by �5�

S̃h��� =
hSQL

2

2
� 1

K
+ K�ṼA

�+�, �78�

where

ṼA
�+� = ṼA

1 cos2�� + �� + ṼA
2 sin2�� + �� . �79�

Here

FIG. 3. �Color online� The normalized phase quadrature vari-
ance relative to the shot noise vs frequency with the photothermal
effect for different pump powers. The photothermal cutoff fre-
quency is higher for a higher level of squeezing whereas it is lower
for a lower level of squeezing. The seed power is 1 mW. The input
fields are shot-noise limited.

FIG. 4. �Color online� The normalized phase quadrature vari-
ance relative to the shot noise vs frequency with the photothermal
effect for different seed powers. The photothermal cutoff frequency
is higher for a higher seed power. The pump power is 0.5Pth. The
input fields are shot-noise limited.

FIG. 5. �Color online� The normalized phase quadrature vari-
ance relative to the shot noise vs frequency with the photothermal
effect for different pump noise levels. The photothermal cutoff fre-
quency is higher for a higher pump noise level. The seed power is
20 mW. The pump power is 0.5Pth.
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hSQL��� 
� 8	

m�2L2 �80�

is the noise spectral density of the dimensionless GW strain
at the standard quantum limit �SQL� for a GW interferometer
with uncorrelated radiation pressure noise and shot noise,

K��� =
2�I0/ISQL��4

�2��2 + �2�
�81�

is the effective coupling constant that relates the output sig-
nal to the motion of the GW interferometer mirrors,

ṼA
1��� , ṼA

2��� are the amplitude and phase quadrature vari-
ances of the input squeezed field with a squeeze angle ����,
respectively, and

���� 
 cot−1K��� �82�

is the effective ponderomotive squeeze angle of the interfer-
omter. Here � is the linewidth of the arm cavities, I0 is the

optical power to the beamsplitter of the GW interferometer,
and ISQL is the optical power to reach the SQL. Squeezed
state sources are generally frequency independent, but the
desired angle may be produced by using optical cavities
placed between the squeezed state source and the interfer-
omter as filters. Both filters that rotate the squeeze angle to
match the ponderomotive squeeze angle �5,27� and filters
that attenuate the antisqueezing in a desired band �29� have
been proposed.

Figure 7 shows the noise spectral density for the conven-
tional GW interferometer in various cases when a
photothermal-noise-limited amplitude-squeezed field is in-
jected into the interferometer. The effect of squeezing with
the photothermal noise on the sensitivity of the GW interfer-
ometer is plotted in the figure. Since the amplitude quadra-
ture is relatively insensitive to the photothermal noise, we
choose the squeeze angle � such that the amplitude quadra-
ture variance is squeezed and the phase quadrature variance
is antisqueezed. The seed and pump powers to the OPO cav-

FIG. 6. �Color online� Top: The normalized phase quadrature
variance relative to the shot noise level vs pump power with the
photothermal effect for different frequencies. The seed power is 1
mW. Bottom: The normalized phase quadrature variance relative to
the shot-noise level vs seed power with the photothermal effect for
different frequencies. The pump power is 0.5Pth. The input fields
are shot-noise limited in both graphs.

FIG. 7. �Color online� The spectral noise density, normalized by
the standard quantum limit �SQL�, for a conventional GW interfer-
ometer with �i� no squeezed input �Unsqueezed�, �ii� squeezed light
injected without the photothermal noise �Frequency-Independent�,
�iii� squeezed light injected with a frequency-dependent squeeze
angle and the photothermal noise �Frequency-Dependent
+Photothermal�, �iv� squeezed light injected with the photothermal
noise �Frequency-Independent+Photothermal�, and �v� amplitude-
filtered squeezed light injected with the photothermal noise
�Amplitude Filter+Photothermal�. With perfect squeeze angle rota-
tion, the photothermally noisy amplitude quadrature does not
couple into the spectral noise density, and therefore the spectral
noise density with squeezed light injected with a frequency-
dependent squeeze angle and without the photothermal noise
�Frequency-Dependent without Photothermal� looks identical to
�iii�. The filter linewidth is 2��400 Hz. The input squeezed source
is chosen to be photothermal-noise-limited amplitude squeezed
light since the amplitude quadrature is relatively immune to the
photothermal noise. The seed and pump powers are 10 mW and
0.5Pth, respectively. The seed and pump fields are shot-noise lim-
ited. The antisqueezed phase quadrature variance has the photother-
mal cutoff frequency at about 1 kHz and the adiabatic limit at about
100 Hz.
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ity are 10 mW and 0.5Pth. If such a squeezed light field is
used for injection without a rotation of the squeeze angle, it
degrades the spectral noise density at about 200 Hz com-
pared with the unsqueezed case although it reduces shot
noise at high frequencies. If a set of two filter cavities is used
to give the frequency-dependent squeeze angle ���� such
that ����=−���� �5�, the sensitivity is improved at all fre-
quencies. This is because the second term in Eq. �78� be-
comes zero and the phase quadrature variance does not
couple into the sensitivity curve. We note that implementa-
tion of such a squeeze angle rotation requires the filter cavi-
ties to be long �on the order of kilometers� in order to mini-
mize the effect of losses that destroy squeezing in the process
�5,28�. Alternatively, if a squeeze amplitude filter is used
before injecting the squeezed light into the GW interferom-
eter �29� such that for a filter linewidth � f,

S̃h��� =
hSQL

2

2K
��1�Ṽ1 + K2Ṽ2� + �2�1 + K2�� , �83�

where

�1��� =
�2

� f
2 + �2 , �2��� =

� f
2

� f
2 + �2 , �84�

the phase quadrature variance containing the photothermal
noise can be reduced at frequencies below 200 Hz although
the level of squeezing at frequencies above 200 Hz is slightly
decreased. Here � f =2��400 Hz is used. Note that a
photothermal-noise-limited phase-squeezed input field with
similar experimental parameters �the seed power=1 mW, the
pump power=0.5Pth� does not enable quantum noise reduc-

tion below 400 Hz, even if the optimal frequency-dependent
squeeze angle rotation is applied.

VI. CONCLUSIONS

We have derived and solved the field evolution equations
in the degenerate optical parametric oscillator �OPO� with
the photothermal noise through the photorefractive effect and
thermal expansion of nonlinear crystals. We also have dis-
cussed various cases about the effect of the photothermal
noise on amplitude and phase quadrature variances. We have
found that the photothermal noise in the OPO introduces a
significant amount of noise on phase squeezed beams, mak-
ing them less than ideal for low-frequency applications such
as GW interferometers, whereas amplitude squeezed beams
are less sensitive to the photothermal noise and may provide
a better choice for low-frequency applications. This problem
can be solved by reducing the seed power and pump noise
and using a nonlinear crystal with a low absorption rate in
order to decrease the photothermal noise.
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