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Abstract
Quantum optical states which have no coherent amplitude, such as squeezed
vacuum states, cannot rely on standard readout techniques to generate error
signals for control of the quadrature phase. Here we investigate the use of
asymmetry in the quadrature variances to obtain a phase-sensitive readout
and to lock the phase of a squeezed vacuum state, a technique which we call
noise locking (NL). We carry out a theoretical derivation of the NL error
signal and the associated stability of the squeezed and anti-squeezed lock
points. Experimental data for the NL technique both in the presence and
absence of coherent fields are shown, including a comparison with coherent
locking techniques. Finally, we use NL to enable a stable readout of the
squeezed vacuum state on a homodyne detector.

Keywords: non-classical light, quantum noise, readout techniques and
control

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum optical states are a much utilized resource required to
perform quantum non-demolition readout [1] and to enhance
the sensitivity of quantum noise limited applications [2]. The
application of quantum states requires, first, the generation of
quality quantum states and, second, the readout and control of
the phase of the states, such that the appropriate quadrature
is measured. For the readout and control of bright squeezed
states, RF modulation/demodulation or dc readout techniques
can be used to stabilize the phase [3, 4]. For quantum states that
do not have a coherent amplitude, such as squeezed vacuum
states [5–7] and quantum entanglement without a coherent
carrier, the usual optical phase locking techniques are not
available. In this situation the only phase-sensitive readout
is the quadrature-dependent fluctuations.

An error signal can be obtained for the case of locking
the squeezed vacuum phase on a homodyne detector in
an analogous way to coherent modulated techniques, for
example [8, 9]. The squeezed beam phase is modulated at an
RF frequency, then the noise power detected on the homodyne
detector with bandwidth �ω is demodulated. This produces

an error signal which has zero crossings at both the minimum
and maximum variance points. This technique, which we
refer to as quantum noise locking or noise locking (NL), has
application in the locking of the phase of quantum states that
have non-polar symmetric phase space distribution functions.
This technique has been used already in squeezed vacuum
experiments; see, for example, [10–12].

Moreover, in applications where the properties of
squeezed vacuum states are desirable, the NL technique is the
only choice for phase control4. One such application may
be in gravitational wave interferometry where low frequency
squeezing at the optimum phase is required. The relative
immunity of squeezed vacuum states to classical noise sources
can result in squeezing being produced in the audio frequency
gravitational wave detection band [12].

In this paper we investigate NL theoretically and
experimentally for two different systems. The first system

4 One could conceive a scheme where a ‘vacuum’ squeezed state is
generated with coherent phase modulation sidebands without a coherent carrier
amplitude imposed on it. Such an experiment has not been demonstrated to
our knowledge.
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is the phase control of a squeezed vacuum state on a balanced
homodyne detector. The second, which provides an alternative
experimental demonstration of NL, is the control of the
phase of two coherent beams which interfere on a balanced
beamsplitter. This second system shares quadrature-dependent
noise with a squeezed state on a homodyne detector, since
the differential phase shift of the fields changes the output
power and the associated shot noise varies accordingly. This
gives maximum shot noise at a bright fringe (analogous to the
anti-squeezed quadrature) and minimum shot noise at the dark
fringe (analogous to the squeezed quadrature).

In section 2, we theoretically analyse the control of a
squeezed vacuum state on a balanced homodyne detector,
although the formalism is general enough to apply to other
systems. We derive the NL error signal and calculate the
theoretically achievable stability. Then we present theoretical
results for the NL of coherent fields. We find the NL lock
stability improves weakly with increasing detection bandwidth
(�ω1/4 dependence) in contrast to standard coherent locking
techniques [8], where increasing detection bandwidth reduces
the lock stability. We find that the stability is dependent on the
level of squeezing/anti-squeezing (fringe visibility in the case
of coherent field NL) and also on which quadrature is locked
to. Perhaps fortunately, we find the lock stability to be superior
when locked to the squeezed quadrature rather than the anti-
squeezed quadrature. We also show that the performance is
degraded by losses and detector inefficiency, as uncorrelated
vacuum fluctuations couple into the signal.

In section 3, we analyse NL experimentally, using both
the coherent NL experiment setup and the squeezed vacuum
on a homodyne detector. In section 3.1, we show results
from the coherent NL experiment of the error signals and lock
acquisition. We also analyse the NL stability by measuring
the error signal spectra and then compare it to that of a
coherent modulation locking (CML) technique. In section 3.2,
experimental results of a squeezed vacuum spectrum taken
using NL for homodyne phase control are shown and we
present error signal spectra which agree qualitatively with the
results derived in section 2. We conclude with a discussion of
NL and its applications.

2. Theory of noise locking

In this section, the error signal and lock stability of NL are
derived theoretically. Figure 1 shows the input fields, â(t)
and b̂(t), with relative phase denoted θ , that interfere on a
balanced beamsplitter. These operators satisfy the standard
commutation relations [13]. The output fields, d̂(t) and ĉ(t),
are incident on the photodetectors, PD1 and PD2. For the
two NL cases considered in this paper, case (a): the squeezed
state on the homodyne detector and case (b): the phase of
two coherent fields, the input fields and photodetection differ
slightly. In the case of NL the phase of a squeezed vacuum state
on a homodyne detector, â(t) is the squeezed state and b̂(t) the
local oscillator (LO). The output of the balanced homodyne
detector is sent to the bandpass filter (BPF). In the case of
NL the phase of two coherent fields, the input fields â(t) and
b̂(t) are set to have similar coherent amplitude. Here only one
output port of the beamsplitter is detected and the output of
the photodetector is sent to the BPF. All the electronics used

PD2

PD1

a

beiθ

c

d

LPFEDBPF

Error signal

PM

Ω/2π

Figure 1. Setup of a balanced homodyne detector with input fields,
â(t) and b̂(t), interfering with relative phase, θ , on a balanced
beamsplitter. Here the local oscillator beam b̂(t) passes through a
phase modulator (PM) with applied sinusoidal modulation at
frequency �/2π . The output fields, d̂(t) and ĉ(t), are incident on
the photodetectors, PD1 and PD2. To derive the NL error signal, the
output of the homodyne is bandpass filtered (BPF) then envelope
detected (ED). The output of the envelope detector is demodulated
and low pass filtered (LPF).

to derive the error signal from the bandpass filter onwards are
identical. The band pass filtered output is sent to an envelope
detector which gives an output proportional to the real envelope
of the input. This signal is then demodulated and low pass
filtered to give the error signal.

2.1. Case (a): noise locking the phase of squeezed vacuum
on a homodyne detector

2.1.1. Derivation of the noise locking error signal. The
fields in figure 1 can be decomposed into average (dc) and
fluctuating (time-dependent) components, ŝ(t) = s̄ + δŝ(t)
for s = a, b, c, d. Here average components are assumed to
be real. The linearized photocurrents of PD1 and PD2 are
proportional to

i θ
d,c(t) = 1

2

[
ā2 + b̄2 ± 2āb̄ sin θ + (b̄ ± ā sin θ)δX (1)

b

+ (ā ± b̄ sin θ)δX (1)
a ± cos θ(āδX (2)

b + b̄δX (2)
a )

]
(1)

where the photocurrent i θ
d (t) is given by the top sign and i θ

c (t)
by the lower sign. The quadrature operators are defined in
the standard way: δX (1)

s = δŝ + δŝ†, δX (2)
s = −i(δŝ − δŝ†).

The difference photocurrent, i θ−(t) = i θ
d (t) − i θ

c (t), can be
decomposed into average and fluctuating components:

ī θ
− = 2āb̄ sin θ (2)

δi θ
−(t) = ā sin θδX (1)

b (t) + ā cos θδX (2)
b (t)

+ b̄ sin θδX (1)
a (t) − b̄ cos θδX (2)

a (t) (3)

and the variance of the difference photocurrent is given by
V θ− = 〈(δi θ−)2〉. We define V (1),(2)

a , V (1),(2)
b as the variances

of the input fields a and b, respectively. The homodyne
photocurrent is bandpass filtered and envelope detected. We
move into the Fourier domain; here Ṽ (1),(2)

a,b (ω) represents the

Fourier transform of V (1),(2)
a,b . The bandwidth limited power

spectrum at the output of the BPF is

S̃θ
−(ω) = ā2(Ṽ (1)

b (ω) sin2 θ + Ṽ (2)
b (ω) cos2 θ)�ω

+ b̄2(Ṽ (1)
a (ω) sin2 θ + Ṽ (2)

a (ω) cos2 θ)�ω, (4)

where �ω is the detection bandwidth. Note that we assume
a perfect BPF with hard edges; experimentally this is not
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Figure 2. The noise variance of a phase squeezed beam relative to
the SNL and the NL error signal as the relative phase is varied. The
error signal’s zero crossing points indicate that the homodyne angle
can be locked to observe both squeezing and anti-squeezing. The
scale of the error signal is arbitrary.

the case. For the condition ā � b̄, the power spectrum in
equation (4) becomes

S̃θ
−(ω) � b̄2(Ṽ (1)

a (ω) sin2 θ + Ṽ (2)
a (ω) cos2 θ)�ω. (5)

The generation of noise locking error signals requires
relative phase modulation of the input fields. We include this
in the phase difference of the input fields as θ = θ0 + θ1 sin �t ,
where θ0 is the average phase, θ1 is the modulation depth
and � is the modulation frequency. For small modulation
depth (θ1 � θ0) we make the approximation eiθ1 sin �t �
J0(θ1) + J1(θ1)ei�t − J1(θ1)e−i�t . Expanding the phase θ and
neglecting the J1(θ1)

2 terms, we find

S̃θ
− � b̄2

[
Ṽ (1)

a J0(θ1)
2 sin2 θ0 + Ṽ (2)

a J0(θ1)
2 cos2 θ0

+ 2J0(θ1)J1(θ1) sin 2θ0 sin �t (Ṽ (1)
a − Ṽ (2)

a )
]
�ω. (6)

After demodulation and low-pass filtering equation (6) to
remove the second harmonic, the NL error signal is obtained:

ε = b̄2 J0(θ1)J1(θ1) sin 2θ0(Ṽ
(1)

a − Ṽ (2)
a )�ω (7)

which has zero crossings at θ0 = 0, π/2. The error signal
amplitude depends on the quadrature variances and their
asymmetry. Thus if there is no asymmetry in the quadrature
variances the error signal vanishes. The variance relative to
the shot noise limit (SNL) and corresponding NL error signal
are shown in figure 2 for 11 dB of phase squeezing.

2.1.2. Stability of noise locking. Since it is the variance
or noise power of the detected squeezed state which is used
to derive the error signal, the noise performance of the lock
depends on the variance of the variance, or the noise on the
noise of the state. This can be found by taking the kurtosis,
which we label �V θ

a . For amplitude quadrature of the field â
in the idealized squeezed state [13], with the variance in the
squeezed quadrature equal to e−2R and in the anti-squeezed
quadrature e2R (where R is the squeezing factor), the kurtosis
is given by

�V (1)
a =

√〈(
δX (1)

a −
〈
δX (1)

a

〉)4
〉
−

〈(
δX (1)

a −
〈
δX (1)

a

〉)2
〉2

= √
2V (1)

a (8)

and similarly for the phase quadrature, �V (2)
a = √

2V (2)
a . Note

that the kurtosis is a factor of
√

2 larger than the variance.
As a measure of locking stability we express the kurtosis

of the variance of the photocurrent, �V θ−, in terms of phase

fluctuations, �θ . We equate the kurtosis with the variance
due to phase fluctuation, i.e., �Ṽ θ− = �Ṽ θ

�θ . Using a Taylor
expansion of �Ṽ θ

�θ to second order around θ = θ0, we find

�Ṽ θ
−(θ0) � dṼ

dθ

∣
∣∣∣
θ0

�θ +
1

2

d2Ṽ

dθ2

∣
∣∣∣
θ0

(�θ)2. (9)

Expanding both sides, the equation becomes
√

2(Ṽ (1)
a sin2 θ0 + Ṽ (2)

a cos2 θ0) = |(Ṽ (1)
a − Ṽ (2)

a ) sin 2θ0�θ

+ (Ṽ (1)
a − Ṽ (2)

a ) cos 2θ0(�θ)2|, (10)

which when solved for �θ at the two lock points (θ0 = 0, π/2)
gives

�θ |θ0=π/2 =
√ √

2Ṽ (1)
a

Ṽ (2)
a − Ṽ (1)

a

(11)

�θ |θ0=0 =
√ √

2Ṽ (2)
a

Ṽ (2)
a − Ṽ (1)

a

. (12)

We can rewrite equations (11) and (12) in terms of R,
detection loss, λ and detection bandwidth, �ω: with detection
loss included the variance is degraded and vacuum fluctuations
are introduced, i.e., V 1,2

a → (1 − λ)V 1,2
a + λ. The dependence

on detection bandwidth can be included by noting that the
variance, which provides the signal for NL, is proportional to
the detection bandwidth, �ω, and the associated noise, the
kurtosis, is proportional to the square root of the detection
bandwidth, (�ω)1/2. The stability of the squeezed and anti-
squeezed quadratures becomes

�θ |θ0=π/2 ∼
√

1 + λ
1−λ

e2R

e4R − 1

(
2

�ω

)1/4

(13)

�θ |θ0=0 ∼
√

1 + λ
1−λ

e−2R

1 − e−4R

(
2

�ω

)1/4

(14)

where we have taken the case of amplitude quadrature
squeezing.

The stability of the two lock points is plotted as a function
of squeezing factor in figure 3. For both the squeezed and anti-
squeezed quadratures the stability of the lock improves as the
squeezing factor is increased. This is not surprising since it is
from the quadrature asymmetry that the error signal is derived.
The squeezed quadrature lock stability is perfect in the limit
of perfect squeezing since the noise in the variance becomes
infinitely small. Note that losses and detector inefficiency
mean that this will never be produced experimentally as shown
with the traces for two different detector losses. The stability
of the anti-squeezed quadrature lock point approaches 21/4 at
high squeezing factor and is always higher than the squeezed
quadrature lock point. Equations (13) and (14) show that the
lock stability for both quadratures improves as the detection
bandwidth is increased, albeit with a weak dependence.

2.2. Case (b): noise locking the phase of coherent fields

The setup of NL of two coherent fields differs sightly from
that of the squeezed vacuum on a homodyne detector. We set
the amplitudes of the two coherent input fields to be similar in
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Figure 3. Squeezing angle stability versus squeezing factor, R, for the cases of NL to the squeezed and anti-squeezed quadratures, for
various levels of detection loss, λ.

PBSλ/2
Nd:YAG
Laser PZT

PM

PD1

PD2

FI

a

b

LPF

Lock-in
EDBPF

100kHz

LPF

Lock-in

Signal
Analyser

Modulation
Error Signal

Noise Error 
Signal

Figure 4. Experimental schematic of the setup used to analyse noise locking. In the optics section: FI—Faraday isolator, PM—phase
modulator λ/2—half-wave plate, PBS—polarizing beam splitter, PZT—piezoelectric transducer bonded onto a mirror, PD1,
PD2—photodetectors 1 and 2. In the electronics section: lock-in—lock-in amplifier, BPF—band pass filter, ED—envelope detector,
LPF—low pass filter, HV amp—high voltage amplifier.

figure 1 and need detect only one output of the beamsplitter5.
Following the procedure set out above, the error signal for the
coherent NL is found to be

ε = āb̄ J1(θ1) cos θ0�ω. (15)

For comparison with the case of NL squeezed vacuum
state to a homodyne detector the stability of locking to the
dark (θ = 3π/2) and bright (θ = π/2) fringes is

�θ |θ= 3π
2

∼
√√

2(a − b)2

ab

(
1

�ω

)1/4

(16)

�θ |θ= π
2

∼
√√

2(a + b)2

ab

(
1

�ω

)1/4

. (17)

5 The phase difference between squeezed and anti-squeezed quadratures is
π/2, whereas bright and dark fringes in the coherent interference experiment
are separated by a phase shift of π .

Note that kurtosis in this case has the same dependence
on variance as in the case of the squeezed state. The
functional form is the same for the dark fringe stability and
the squeezed quadrature stability, equations (16) and (13),
respectively. Similarly for the bright fringe and anti-squeezed
quadrature stabilities, equations (17) and (14), respectively.
The dependence on detection bandwidth is found to be identical
in the two cases.

3. Experimental demonstration of quantum noise
locking

An important feature of quantum noise locking is that this
technique can be used in the presence of coherent fields,
but, more importantly, also when no coherent amplitude is
present. In this section, we show experimental demonstrations
of noise locking in these two cases: (i) when coherent fields are
available, as at the output of a Mach–Zehnder interferometer;
and (ii) the output of a vacuum-seeded OPO, where no coherent
amplitude is present.
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Figure 5. (a) The dc voltage on PD1 as the fringe is scanned (the photodetector is negatively coupled, thus lower voltage corresponds to
higher incident power). (b) The corresponding CML error signal (trace (i)) and the NL error signal (trace (ii)). (c) Lock acquisition trace
showing the noise locking error signal (top trace) and voltage on PD1 (bottom trace). Initially, the differential phase is not controlled; about
0.4 s into the trace the control loop is closed and the interferometer is locked to a bright fringe on PD1 (dark fringe on PD2). Lock-in
amplifier settings: LPF time constant = 10 ms, 6 dB/octave for the both CML techniques. In trace (a) the dc voltage has been split due the
impedance of the lock-in amplifier.

3.1. Experimental analysis of noise locking of coherent fields

A schematic of the experiment is shown in figure 4, broken into
two sections: optics and electronics. In the optical part of the
experiment, 2 mW from a Nd:YAG laser operating at 1064 nm
was split into two beams for the input fields to the second
beamsplitter of the Mach–Zehnder configuration. In figure 4,
the upper arm field corresponds to the field â whilst the lower
arm corresponds to the field b̂, since this arm contained a phase
modulator (modulated at �/2π = 100 kHz with modulation
depth, β ≈ 0.045 rad). This modulation was used in the
derivation of the NL error signal. A mirror mounted on a
piezoelectric transducer (PZT) was the actuator used in the
feedback loop to control the relative phase of the input beams.
A variable attenuator consisting of a λ/2 plate and a polarizing
beam-splitter (PBS) was placed in the lower arm to allow the
fringe visibility to be changed—to mimic changing the level
of squeezing and anti-squeezing. The fringe visibility was
set to 0.6 to have 6 dB noise power variation on the fringe.
Both output ports of the beamsplitter were detected on matched
photodetectors (PD1 and PD2) with ETX500 photodiodes, but
only one photodetector (PD2) was used to derive the NL error
signal. An error signal using a standard coherent modulation
locking (CML) technique was derived from photodetector
(PD1). This was used for comparison with the NL technique.

The NL error signal was produced as follows: the output
of PD2 was bandpass filtered, with low frequency cut-off
fl = 2 MHz and high frequency cut-off fh = 20 MHz, giving
a detection bandwidth �ω/2π = 18 MHz. The low frequency
corner was designed to cut out any component of the coherent
modulation signal at 100 kHz by employing a low frequency
corner with f 3 roll up. Over this frequency range most of the
spectrum (5–20 MHz) is shot noise limited; however, below
5 MHz there is some classical intensity noise present. The
BPF output was then sent to an envelope detector, which
had a series of amplifying stages then a diode stage, giving
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Figure 6. Spectral density of the error signals whilst the
interferometer is locked using CML. Traces (i) and (ii) are the NL
error signal spectra of the bright and dark fringes (on PD2). Traces
(iii) and (iv) are the CML error signal spectra of the bright and dark
fringes (on PD1). The excess noise of the NL readout can be seen
from the different amplitudes of the CML and NL error signal
spectra.

an output proportional to real envelope of the signal below
the cut-off frequency, which in our case was 200 kHz. The
output of the envelope detector was then demodulated using an
low frequency lock-in amplifier (Stanford Research Systems
(SRS)-SR830) to give the NL error signal. The error signal
was then low pass filtered to remove the second harmonic then
passed through the servo and amplified before being fed back
to the PZT actuator.

For the derivation of the CML error signal the
photodetector output of PD1 was sent to an identical lock-
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Figure 7. (a) Schematic of the squeezed vacuum experiment. (b) The squeezed state at 11.2 kHz as the phase of the homodyne is varied.
RBW = 1 kHz, VBW = 30 Hz. Electronic noise (9 dB below SNL) was subtracted from the data.

in amplifier where it was demodulated then low pass filtered.
This error signal was used for comparison of NL.

Figure 5 shows (a) the detected optical power on PD1 (the
photodetector is negatively coupled) and (b) the error signals
of (i) the modulation technique and (ii) the NL error signal as
the fringe was scanned. Note that the demodulation phase of
the two techniques has 180◦ difference to give the error signals
the same sign in the figure, given that the signals are derived
from different beamsplitter ports. It can be seen that both error
signals have zero crossing points at the bright and dark fringes.
The noise of the NL error signal is much greater than that of
the CML technique, which is not visible on this scale. Also,
the noise on the NL error signal varies significantly over the
fringe. The noise on the NL error signal is minimized at the
dark fringe for PD2 (bright fringe for PD1) and maximum at
the bright fringe for PD2 (dark fringe for PD1). This result
agrees with the findings of section 2.1.2 and can be seen in
figure 3.

Lock acquisition using NL is shown in figure 5(c). The
bottom trace is the optical power on PD1 and the top trace is the
NL error signal. Initially, the control loop is open. At 0.4 s into
the trace the control loop is closed. Here the NL error signal
is quickly zeroed and the fringe on PD1 reaches the maximum
value. The NL system could maintain lock indefinitely.

The noise performance of the NL was compared to the
CML technique. This comparison can be seen in the spectral
density of the error signals recorded on a signal analyser (SRS-
SR785), shown in figure 6, whilst the system was locked using
CML. The CML error signal spectral densities are shown with
little difference in the spectra of the signals for the bright fringe
locking (trace (iii)) and dark fringe locking (trace (iv)). Many
mechanical noise sources in the interferometer couple into the
readout and can be seen in the structure shown in the error
signal spectra. The NL error signal spectra are for the bright
fringe on PD2 (trace (i)), and for the dark fringe on PD2 (trace
(ii)). These NL spectra have excess noise of greater than 40 dB
and show little resemblance to the CML error signal spectra.
This indicates that the NL technique has substantial excess
noise which buries the interferometer noise. The noise of the
bright fringe NL readout is approximately 6 dB larger than
the dark fringe NL readout, a result which agrees qualitatively
with the theoretical stability results in section 2.1.2.
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Figure 8. Measured noise spectra for (i) the quantum noise limit of
the homodyne detection system, (ii) the squeezed vacuum and (iii)
the electronic noise of the homodyne detection system. The
electronic noise was −12 dB below the quantum noise from
10–100 kHz. The 20 kHz peak arises from the NL modulation.
Peaks at 50 Hz harmonics are due to electrical mains supply.

3.2. Application of noise locking to a squeezed vacuum state

Figure 7(a) shows a schematic of the squeezed vacuum locking
experiment. A Nd:YAG laser was used as the LO and to pump
the squeezed vacuum generator. Figure 7(b) shows the noise
power relative to the shot noise limit (SNL) of a squeezed
vacuum beam as the LO phase is varied. The squeezing
amplitude measured (after losses) is 3.6 dB, which corresponds
to a squeeze factor R = 0.41.

The squeezed vacuum experiment consisted of a second
harmonic generator used to pump an optical parametric
oscillator (OPO) operating below threshold, where the
squeezed vacuum state was generated. The noise locking
error signal used to control the homodyne phase was produced
similarly to the technique in the experiment in the previous
section. The relative phase of the homodyne detector was
modulated at �/2π = 20 kHz using a mirror mounted on a
PZT. This PZT-mounted mirror was also used as the actuator
in the control loop. We used a spectrum analyser as the
envelope detector (Agilent-E4407B) at 2 MHz, with detection
bandwidth (resolution bandwidth (RBW)) 300 kHz and low
frequency cut-off (video bandwidth (VBW)) of 30 kHz.
Further experimental details can be found in [12].
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Figure 9. The error signal spectra taken whilst a squeezed vacuum state was NL on a homodyne detector. The top trace was recorded whilst
the homodyne was locked to the anti-squeezed quadrature. The lower trace was recorded whilst the homodyne was locked to the squeezed
quadrature. Experimental parameters: the modulation frequency �/2π = 19.7 kHz, BPF low frequency corner at fl = 1 MHz and high
frequency corner, fh = 30 MHz. The cut-off frequency at the output of the ED was 100 kHz. The Lock-in amp had time constant 100 µS,
slope 12 dB/octave.

The spectra in figure 8 show squeezing from 280 Hz to
100 kHz (trace (ii)); below the quantum noise limit of the
homodyne detector (trace (i)); and the electronics noise floor
(trace (iii)). The squeezed vacuum spectrum is over 3 dB below
the SNL over most of the frequency range but reduces at lower
frequency. Whilst these data were taken the OPO cavity was
not length controlled, since there was no coherent field in the
OPO cavity that could be used as a phase reference6. This
meant that the cavity was brought onto resonance manually
and would then slowly detune. As the OPO cavity detunes the
squeezed quadrature of the squeezed vacuum output changes.
Also, the pump phase was not controlled, which again means
that the squeezed quadrature was free to evolve. Both of
these issues are nulled as NL locks the LO phase to the
squeezed quadrature. This property enabled the data traces
to be recorded and the stability of the system was limited by
the unlocked OPO, not the NL loop.

The NL error signal spectrum taken in-loop (whilst
the squeezed state homodyne was locked using NL with a
bandwidth of about 400 Hz) is shown in figure 9. These data
were taken on a different squeezing experiment, which had
slightly different experimental parameters7. The top trace was
taken with the homodyne phase locked to the anti-squeezed
quadrature (5 dB above the SNL at 4 MHz) and the bottom
trace was taken whilst the homodyne phase was locked to
the squeezed quadrature (1 dB below the SNL at 4 MHz).
The NL error point spectrum below 1 kHz is suppressed
due to the loop gain. Above the unity gain frequency of
the control loop, approximately 400 Hz, the spectrum of the
error point decreases due to the low pass filter of the control
loop. The difference in the error signal spectral amplitude

6 The cavity could have also been NL; however, for the purpose of taking the
data this was unnecessary.
7 These data were recorded in the MIT laboratory. All other experimental
data were recorded in the ANU laboratory; hence the different experimental
parameters.

for the squeezed and anti-squeezed lock points is due to the
excess noise introduced in the anti-squeezed lock. This agrees
qualitatively with the result derived in section 2.1.2 and with
the experimental data for coherent fields plotted in figure 6.

4. Conclusions

In this paper we have analysed the NL technique both
theoretically and experimentally. In the theory section, we
derived the error signal for locking a squeezed vacuum state on
a homodyne detector. The stability of NL was analysed and it
was found that the stability improves with squeezing amplitude
and detection bandwidth. Also, the squeezed quadrature lock
stability is always superior to the anti-squeezed quadrature
lock stability. We found that detector inefficiencies and
losses degrade the stability of NL, since uncorrelated vacuum
fluctuations are coupled into the signal.

As expected, in the experimental analysis of NL we
found that the stability of noise locking is significantly
less than what can be achieved with coherent modulation
locking. However, in the absence of coherent fields, the noise
locking technique remains a good candidate for extracting
error signals to control quadrature phases. With moderate
detection bandwidth (� f = 18 MHz) and fringe visibility of
0.6 (equivalent squeezing factor of R = 0.35), the stability
of NL was of the order of 40 dB worse than the CML
technique. To improve the stability of NL two options are
apparent. The first is to increase the detection bandwidth and
the second is to increase the squeezing amplitude. However,
both of these may be difficult experimentally. The bandwidth
dependence of the stability is weak, (1/�ω)1/4, as argued
in section 2.1.2. Given that most squeezing experiments
have optically limited bandwidth of order 10 MHz [14],
this will not generally be an option. Stability can also be
improved by increasing the squeezing factor; however, given
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the experimental challenges of increasing the squeezing factor
(the best measured is 7 dB [15]) this avenue is unlikely to make
a significant improvement. In conclusion, though the stability
of coherent modulation locking is always superior to that of
noise locking, noise locking can be quite an effective technique
for locking of squeezed vacuum states using homodyne
detection.
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