
Chapter 1

Optimization problem

Optimization problems are abundant in our daily lives, as we each have a set of goals and
finite resources which should be optimally allocated. Of all these resources, time is always
in demand, as there are natural bounds on our time resources. We are limited to 24 hours
in a day, yet we need to allocate time for sleep, studies, work, rest, and multiple other tasks.
We are always facing a question: should we sleep an extra hour to be rested before work
or should we instead read an interesting book? Everyone has a different solution, but the
problem is the same: how to optimize the distribution of the available resources to get a
maximum outcome. In this chapter, we will cover several typical optimization problems and
common methods to solve them. But it should be said up front: there is no guaranteed
way to find the global optimal point, i.e. the very best, at finite time in a general
case.

1.1 Introduction to optimization

Before we begin, we will start with a formal mathematical definition of the optimization
problem.

The optimization problem

Find ~x that minimizes E(~x) subject to g(~x) = 0 and h(~x) ≤ 0, where
~x is the vector of independent variables;
E(~x) is the energy function, which sometimes is also called: objective or fitness or

merit function;
g(~x) and h(~x) are constraining functions.

As you can see, we solve the optimization towards a minimum, i.e. the minimization prob-
lem in computer science. It is easy to see that maximization problems are the same as
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minimization, once we change E(~x)→ −E(~x).

For a physicist, it is clear why the minimized function is called energy. We are looking for
the minimum, or lowest point, which is the point on the potential energy landscape where
a physical system tends to arrive (in the presence of the dissipative forces), i.e. nature
constantly solves the minimization of energy problem.

The constraining functions are dealing with some additional dependencies among the com-
ponents of the ~x. If we have a budget of 100 dollars per day, we allocate certain amounts for
food (x1), books (x2), movies (x3), and clothes (x4). Our final goal is to maximize overall
happiness or, since we are doing minimization, to minimize unhappiness. Everyone has a
different merit function which depends on the above parameters, although there is an obvious
common constraint: we cannot spend more than $100, so h(~x) = (x1+x2+x3+x4)−100 ≤ 0.
The constraining function can take the form of conditional statements or set a limit for only
a few parameters. For example, we can say that we need to spend at least some amount of
money on food. There are also unconstrained problems where any value of ~x is permitted.

1.2 One dimensional optimization

At first, we consider the one dimensional optimization problem, i.e. the (~x) has only one
component. In this case, we can drop the vector notation and just use x for the independent
variable as x is one dimensional. Suppose that dependence of our merit or energy function
(E) on x looks as shown in the fig. 1.1. If we know the analytical expression for E(x),
we can find an expression for its derivative f(x) = dE/dx. Then we find the positions of
extrema by solving f(x) = 0 and checking which of them belongs to the global minimum
(recall that some of them might belong to local minima or even maxima). We just reduced
the optimization problem to the root finding problem for which we have a variety of solution
algorithms discussed in the chapter 8.

E(x)

x

Figure 1.1: The example of the function to be minimized.

Interestingly enough, if we know how to solve the minimization problem, we can use it for
the root finding problem, i.e. f(x) = 0. This is done by assigning the merit function to
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be E(x) = f(x)2. Since such E(x) ≥ 0, the global minimum position (xm) where E = 0
coincides with the root of f(x).

Now, let’s discuss the general requirements for the minimization algorithm. We need to
somehow bracket the minimum (optimum) location, and then iteratively reduce the bracket
size, until we find the precision of the optimum location (given by the bracket length) satis-
factory. Let’s assume that we are in the close vicinity of a minimum, i.e. there is no other
extremum inside the bracket. If you think a bit about the problem, you will see that probing
only one test point within the bracket does not provide enough information to correctly
assign the new ends of the bracket. So, we need to calculate the function value for at least
two inner points, then we can assign the new bracket by the following rule: the bracket ends
should be the two closest points (among already checked: bracket ends and two inner points)
surrounding the lowest currently known merit point. Then we can repeat the above bracket
updating procedure until the required precision is reached.

Now, the key question becomes: how do we choose two inner points for the above general
algorithm efficiently1? Quite often, the merit function is expensive to calculate either from
the time required for calculation or sometimes literally (if you optimize a rocket engine, it
is not cheap to build a new test engine). Therefore, we would like to reduce the number of
the merit function calculations per bracket reduction.

1.2.1 The golden section optimum search algorithm

The golden section optimum search algorithm addresses the efficiency question by reusing
one of the two previous test points and, consequently, requires only one additional function
calculation per bracket update.

1 Efficiently means optimally, so we are solving yet another optimization problem.
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The golden section optimization algorithm

Assign a bracket interval (a, b) which surrounds a minimum (ideally the global mini-
mum) closely enough, i.e. there is no other extrema in the interval (this is similar to
the requirement in the item 4 below).

1. Calculate h = (b− a).
2. Assign new probe points x1 = a+R× h and x2 = b−R× h, where

R =
3−
√

5

2
≈ 0.38197 (1.1)

3. Calculate E1 = E(x1), E2 = E(x2), Ea = E(a), and Eb = E(b).
4. We require the bracket size to be small enough h: E(x1) ≤ E(a) and E(x2) ≤
E(b). This is important! In this case, we can shrink or update the bracket:

• if E1 < E2 then b = x2 and Eb = E2 else a = x1 and Ea = E1;
• recalculate h = (b− a).

5. If the required precision is reached, i.e. h < εx, then stop (choose any point
within the bracket for the final answer) otherwise do the steps below.

6. Reuse one of the old points either (x1, E1) or (x2, E2)
• if E1 < E2

then x2 = x1, E2 = E1, x1 = a+R× h, E1 = E(x1)
else x1 = x2, E1 = E2, x2 = b−R× h, E2 = E(x2)

7. Repeat from the step 4.

It is easy to see that the new bracket size h′ = (1 − R) × h. In other words, the bracket
shrinks by the factor 1 − R = ϕ = (

√
5 − 1)/2 ≈ 0.61803, which is the golden ratio2. This

gives the name to the whole algorithm.

Derivation of the R coefficient

Let’s derive the expression for the R coefficient. Look at the above algorithm; at the first
step we have

x1 = a+R× h (1.2)
x2 = b−R× h (1.3)

2 The golden ratio dates to the time of ancient Greeks and naturally comes up in the solutions of
several geometrical and mathematical problems. Some even argue that it has some aesthetic properties for
geometrical constructs. For example, the rectangle with the ratio of the short side to long side equal to ϕ is
apparently pleasing to eyes. Maybe this is why more and more computer screens have sides of ratio 9 to 16
which is close to ϕ.
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Figure 1.2: The golden section minimum search method illustration.

As depicted in fig. 1.2, if E(x1) < E(x2), a′ = a, and b′ = x2 then we assign the next probing
points x′1 and x′2 according to

x′1 = a′ +R× h′ = a′ +R× (b′ − a′) (1.4)
x′2 = b′ −R× h′ = b′ −R× (b′ − a′) = x2 −R× (x2 − a) (1.5)

We would like to reuse one of the previous evaluations of E, so we require that x1 = x′2.
Using this, we plug eq. (1.2) into the right hand side of eq. (1.5) and obtain

a+R× h = b−R× h−R× (b−R× h− a) (1.6)

Recalling that h = b− a, we can cancel it out and obtain the quadratic equation

R2 − 3R + 1 = 0

with two possible roots

R =
3±
√

5

2

We need to choose the solution with the ‘minus’ sign since R × h should be less than h to
land the two probe points inside the bracket.

1.2.2 MATLAB’s built-in function for the one dimension optimiza-
tion

MATLAB has a built-in function fminbnd to perform the one dimension optimization, which
uses the modified golden section search algorithm for its implementation. The fminbnd
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function takes three mandatory arguments: the handle to the merit function, the left end of
the bracket, and the right end of the bracket. We can also supply some additional options
that, for example, set the required precision for the minimum location or the number of the
permitted function evaluations.

1.2.3 One dimensional optimization examples

Maximum of the black body radiation

In physics, an object is called ‘black body’ if it does not reflect electro-magnetic radiation.
Surprisingly, a black body could radiate quite a lot of energy and thus appear bright when
it is hot enough. In this regard, our Sun is actually an almost perfect black body and so is
an incandescent bulb when it is on.

According to Plank’s law, the spectrum of the power radiated per area of the black body
per wavelength into the solid angle has the following dependence on wavelength of electro-
magnetic radiation (λ) and temperature (T )

I(λ, T ) =
2hc2

λ5
1

e
hc
λkT − 1

(1.7)

where

h is the Planck constant 6.626× 10−34 J×s,

c is the speed of light 2.998× 108 m/s,

k is the Boltzmann constant 1.380× 10−23 J/K,

T is the body temperature in K,

λ the is wavelength in m.

For an incandescent bulb with a typical filament’s temperature of 1500 K, the black body
radiation spectrum looks as depicted in fig. 1.3. We calculate it with the help of the function,
which implements eq. (1.7), listed below

Listing 1.1: black_body_radiation.m (available at http://physics.wm.edu/
programming_with_MATLAB_book/ch_optimization/code/black_body_radiation.m)
function I_lambda=black_body_radiation(lambda,T)
% black body radiation spectrum
% lambda − wavelength of EM wave
% T − temperature of a black body
h=6.626e−34; % the Plank constant
c=2.998e8; % the speed of light
k=1.380e−23; % the Boltzmann constant
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I_lambda = 2*h*c^2 ./ (lambda.^5) ./ (exp(h*c./(lambda*k*T))−1);
end

It is easy to see that most of the radiation is emitted above the 1000 nm wavelength, where
the human eye has no ability to register the light. Consequently, incandescent bulbs are
not very efficient at providing light, since most of the energy becomes heat (i.e. infrared
radiation). It’s no wonder there is a big effort to replace incandescent bulbs with modern
fluorescent or LED bulbs, which provide much more efficient lighting.
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Figure 1.3: The black body radiation spectrum for an incandescent bulb with the filament’s
temperature T=1500 K

Suppose we would like to know the wavelength of the Sun’s maximum radiation. MATLAB
knows how to find a minimum of the function, so we create the merit function f, which is
black_body_radiation reflected (inverted) with respect to ‘x’ axis. The Sun’s photosphere
temperature is 5778 K, so we set the T accordingly.

T=5778;
f = @(x) − black_body_radiation(x,T);
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Figure 1.4: The inverted radiation spectrum of the Sun or any black body with the temper-
ature T=5778 K.

The resulting plot of the merit function, i.e. the inverted black body radiation spectrum of
the Sun, is depicted in fig. 1.4. As we can see, the minimum is located somewhere in the
(10−9, 10−6) interval. We need to adjust the default ‘x’ tolerances, since the typical ‘x’ value,
as it shown in fig. 1.4 is in the order of 10−6 which is MATLAB’s default precision. We use
optimset command below to tune the precision. Now, we are ready to search the minimum
location with the following commands.

fminbnd(f, 1e−9, 1e−6, optimset('TolX',1e−12))
ans = 5.0176e−07

As you can see, the answer is 5.0176e−07, measured in meters, so the maximum of the Sun
radiation is at roughly 502 nm, which corresponds to green light3. No wonder that human
eye is the most sensitive to green light, since it is the dominating wavelength in a naturally
lit environment.

3 Strangely enough, the Sun appears to be yellowish to a human eye. This is due to a particular response
of the light sensitive elements in the eye and in the brain that reconstruct the perceived color. One side
effect is that there are white, blue, yellow, and red stars (which are all the black bodies listed in the order
of the decreasing temperature) but there are no green stars in the sky.
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1.3 Multidimensional optimization

We will not talk about algorithms of multidimensional optimization for smooth functions
here4. If you are interested in them, have a look at specialized numerical methods books,
for example [6]. Instead, we will piggyback on the MATLAB’s fminsearch function.

1.3.1 Examples of multidimensional optimization

The inversed sinc function

Let’s find a minimum of the inverse two-dimension sinc function

f1(x, y) = − sin(r)/r, where r =
√
x2 + y2 (1.8)

The plot of this function is shown in fig. 1.5.
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Figure 1.5: The two-dimension sinc function plot.

To do the optimization with fminsearch, we need to implement eq. (1.8) as a function of
only one vector argument as shown below

Listing 1.2: fsample_sinc.m (available at http://physics.wm.edu/programming_with_
MATLAB_book/ch_optimization/code/fsample_sinc.m)
function ret=fsample_sinc(v)

x=v(1); y=v(2);
r=sqrt(x^2+y^2);
ret= −sin(r)/r;

end

4 It is the author’s opinion that programming such algorithms does not bring much educational value.
MATLAB has good enough and ready to use implementations.
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The components of the input vector v are representing ‘x’ and ‘y’ coordinates. It is up to us
to assign ‘x’ as the first component and ‘y’ as the second one; we can do it the other way as
well.

To call fminsearch we need two arguments: the first is the handle to the function to be
optimized (i.e. @fsample_sinc) and the second is a starting point for the minimum search
algorithm (in this example, we will use [0.5, 0.5]). Once we have made the above decision,
we are ready to search for the minimum:

>> x0vec=[0.5, 0.5];
>> [x_opt,z_opt]=fminsearch(@fsample_sinc, x0vec)
x_opt = [0.2852e−4, 0.1043e−4]
z_opt = −1.0000

As we can see, the minimum is located at x_opt=[0.2852e−4, 0.1043e−4] which is very
close to the true global minimum at [0,0]. The value of the function in the found optimum
location is z_opt = −1.0000 which matches (within shown precision) the global minimum
value−1.

It is easy to miss the global minimum if we choose a bad starting point as in the example
below

>> x0vec=[5, 5];
>> [x_opt,z_opt]=fminsearch(@fsample_sinc, x0vec)
x_opt = [ 5.6560 5.2621 ]
z_opt = −0.1284

Here, we find a local minimum, but not the global minimum. Recall that no algorithm
can find the global minimum in a general case, especially when it starts far away from the
optimum.

3D optimization

Let’s find the minimum of the function

f2(x, y, z) = 2x2 + y2 + 2z2 + 2xy + 1− 2z + 2xz. (1.9)

We do it by implementing f2 as show below

Listing 1.3: f2.m (available at http://physics.wm.edu/programming_with_MATLAB_book/
ch_optimization/code/f2.m)
function fval = f2( v )
x = v(1);
y = v(2);
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z = v(3);
fval = 2*x^2+y^2+2*z^2+2*x*y+1−2*z+2*x*z;
end

Yet again, it is up to us which component of the input vector we use as ‘x’, ‘y’, and ‘z’. To
find the minimum, we choose an arbitrary starting point [1,2,3] and execute

>> [v_opt, f2_opt]=fminsearch(@f2, [1,2,3])
v_opt = −1.0000 1.0000 1.0000
f2_opt = 4.8280e−10

At first glance, it may not be clear how to check the calculated minimum position v_opt =
−1.0000 1.0000 1.0000, but we can rewrite the eq. (1.9)

f2(x, y, z) = (x+ y)2 + (x+ z)2 + (z − 1)2 (1.10)

Since every term above is quadratic, the minimum is reached when each term is equal to
zero. So the global minimum is at [x, y, z]=[−1,1,1]. For the same reason, f2 cannot be
less than zero; so f2_opt = 4.8280e−10, which is very close to zero, is appropriate.

Joining two functions smoothly

Suppose we have a function which has the following form5

Ψ(x) =

{
Ψin(x) = sin(kx) : 0 ≤ x ≤ L
Ψout(x) = Be−αx : x > L

We would like to make our function smooth, i.e. both the function and its first derivative are
continuous everywhere. The only problem point is located at x = L where one continuous
and smooth function meets another. The following equations are in charge of the smooth
link conditions

Ψin(L) = Ψout(L) (1.11)
Ψ′in(L) = Ψ′out(L) (1.12)

5 You are probably interested where this function comes from. This is the solution of the Quantum
Mechanics problem about a particle in one-dimensional potential well described by the following potential

U(x) =

 ∞ : x < 0
0 : 0 ≤ x ≤ L
Uo : x > L

where k =

√
2m(E−Uo)

h̄ , α =

√
2m(Uo−E)

h̄ , m is the mass of the particle, E is its total energy, and h̄ = h/(2π)
is the reduced Planck constant. Since the potential is infinite at x < 0, Ψ(x) = 0 in this region.
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After substitution of the Ψ expression, we obtain

sin(kL) = Be−αL (1.13)
k cos(kL) = −αBe−αL (1.14)

Suppose that we somehow know k. What should be the values of α and B? We can solve
the above system of nonlinear equations to get α and B but this is a tedious task. Besides,
this chapter is about optimization. So, we will use our new skills to solve the problem. We
rearrange the equations as

sin(kL)−Be−αL = 0 (1.15)
k cos(kL) + αBe−αL = 0 (1.16)

then we square and add them together(
sin(kL)−Be−αL

)2
+
(
k cos(kL) + αBe−αL

)2
= 0. (1.17)

So far, we have not done anything out of the ordinary. Now, we call the right hand side of
the above equation as the merit of our problem

M(α,B) =
(
sin(kL)−Be−αL

)2
+
(
k cos(kL) + αBe−αL

)2
. (1.18)

The global minimum of the merit function is the point in α and B space where eqs. (1.15)
and (1.16) are satisfied. The listing of the merit function is shown below

Listing 1.4: merit_psi.m (available at http://physics.wm.edu/programming_with_
MATLAB_book/ch_optimization/code/merit_psi.m)
function [m] = merit_psi(v, k , L)
% merit for the potential well problem
alpha=v(1);
B=v(2);

m=(sin(k*L) − B*exp(−alpha*L))^2 + (k*cos(k*L) + alpha*B*exp(−alpha*L))^2;

end

All we need to do is to assign the k and L values and make the fminsearch compatible merit
function (i.e. the one which accepts the problem parameters vector). All of this is done by
executing the code below
>> k=2+pi; L=1;
>> merit=@(v) merit_psi(v, k, L);
>> v0=fminsearch( @merit, [.11,1] )
v0 = 2.3531 −9.5640

The resulting values are α = 2.3531 and B = −9.5640. The plot of the Ψ function with these
values is shown in fig. 1.6. As you can see, the transition between inner and outer parts of
the Ψ function is smooth, as required.
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Figure 1.6: The plot of the smoothly connected inner and outer parts of the Ψ function

Hanging weights problem

Consider the masses m1 and m2, which are connected by rods with length L1, L2, and L3 to
suspension points hanging in Earth’s gravitational field (see fig. 1.7). The suspension points
are separated horizontally by Ltot and vertically by Htot distances. Our goal is to find the
angles θ1, θ2, and θ3 of these weights arrangement in equilibrium. This is a typical Physics
101 problem. To solve it, we need to set and solve several equations regarding forces and
torques acting on the system. This is not a trivial task. You might wonder what this problem
has to do with optimization. You will soon see that this problem can be replaced with the
minimization problem and solved quite elegantly (i.e. with fewer equations to track). The
downside is that the solution will be numerical, i.e. we would have to redo the calculations
if some parameters change.

Recall that the other name of the merit function is energy, for a quite important reason: a real
life system seeks the minimum of the potential energy due to forces of nature. So, we need
to minimize the potential energy subject to the length constraints. The latter requirement is
important since the potential energy minimization alone will push our weights to the lowest
position, but they are connected by the links, so this needs to be taken into account. See
the code below for the resulting merit function of this problem. Note that we already put
the particular values for the masses, lengths of each rod, and suspension point separation.

Listing 1.5: EconstrainedSuspendedWeights.m (available at http://
physics.wm.edu/programming_with_MATLAB_book/ch_optimization/code/
EconstrainedSuspendedWeights.m)
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Figure 1.7: The suspended weights arrangement.

function [merit, LengthMismatchPenalty, HeightMismatchPenalty] =
EconstrainedSuspendedWeights( v )

% reassign input vector elements to the meaningful variables
theta1=v(1); theta2=v(2); theta3=v(3); % theta angles

g=9.8; % acceleration due to gravity
m1=2; m2=2; % masses of the weights
L1=3; L2=2; L3=3; % lengths of each rod
Ltot=4; Htot=0; % suspension points separations
% fudge coefficients to make merit of the potential energy comparable to
% length mismatch
mu1=1000; mu2=1000;

Upot=g*( (m1+m2)*L1*sin(theta1)+m2*L2*sin(theta2) ); %potential energy
HeightMismatchPenalty=(Htot−(L1*sin(theta1)+L2*sin(theta2)+L3*sin(theta3)))

^2;
LengthMismatchPenalty=(Ltot−(L1*cos(theta1)+L2*cos(theta2)+L3*cos(theta3)))

^2;

merit=Upot+mu1*LengthMismatchPenalty+mu2*HeightMismatchPenalty;
end

The above code needs some walkthrough. Why is length mismatch called a penalty? If
we have a length mismatch for some test point, we need to let the solver know that we
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are breaking some constraints, i.e. we need to penalize such a probe point. Since we are
looking for the minimum, we add something positive to the resulting merit value at this
point. It is usually good idea to add a square of mismatch: it is always positive and smooth.
The mu1 and mu2 coefficients emphasize the importance of the particular contribution to the
resulting merit. Their assignment usually requires some tuning to make all contributions
equally important.

For the problem with the chosen above parameters, i.e.

m1=2; m2=2;
L1=3; L2=2; L3=3;
Ltot=4; Htot=0;

We can notice the symmetry: the masses are the same and the outer rods are the same. So,
we can be sure that the inner rod (L2) should be horizontal, i.e. θ2 = 0; additionally, θ1
should be equal to −θ3 due to the same symmetry. We can even find their values precisely:
θ1 = −1.231 and θ3 = 1.231. Let’s see if the minimization algorithm gives the correct answer.

>> theta = fminsearch( @EconstrainedSuspendedWeights, [−1,0,−1], optimset('
TolX',1e−6))

theta = −1.2321 −0.0044 1.2311

You can see that the answer is quite close to the theoretically predicted values. So, we
declare our approach successful.

1.4 Combinatorial optimization

There is a subclass of problems where the parameters vector or its components can take only
discrete values. For example, you can only buy hot dog buns in set of 8. So, when you are
optimizing your spendings for a party, you would have to account for 0 or 8 or 16 . . . as a
possible number of buns.

As a result of this discretization, the optimization algorithms and function, which we have
covered before, are of little use. They assume that any component can take any value and
that the merit function will be fine with it. There is a way around this. We can create
constraining functions which take care of it but this is generally not a trivial task.

Instead, we have to find a method to search through discrete sets of all possible input values,
i.e. try all possible combinations of ~x components. Hence, the name of the optimum search
is combinatorial optimization.

Unfortunately, there is no way to design a general optimum searching algorithm which can
solve any combinatorial problem. So every combinatorial problem requires a specific solution,
but the general idea is the following: probe every possible combination of the inputs and
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select the best. Usually, the hardest part is to devise a method to go over all possible
combinations (ideally without repeating the already probed one).

We will cover two problems which should give you a general idea about how to approach
problems of this type.

1.4.1 Backpack problem

Suppose you have a backpack with the given size (volume) and a set of objects with given
volumes and monetary (or sentimental) values. Our job is to find the subset of items that
can be packed into the backpack and has the maximum combined value. For simplicity, we
will assume that every item occurs only once.

The mathematical formulation of the above problem is the following: maximize the merit
function

E(~x) =
∑

valueixi =
−−−→
values · ~x

subject to the following constraint∑
volumeixi =

−−−−−→
volumes · ~x ≤ BackpackSize

Where xi can be 0 or 1, i.e. it reflects whether we pack ith item or not.

We will try a brute force approach, i.e. we will check every possible combination of the
items6. For each item there are two possible outcomes (pack or do not pack). If we have
N items the number of all possible combinations is 2N . So, both the size of all possible
combinations (i.e. the problem space) and the solving time grow exponentially. On the
bright side, we will find the global optimum.

The hardest part of the problem is to find a way to generate all possible combinations of
objects to leave or take. We note that the vector ~x is a combination of zeros and ones. For
example, the vector might be ~x = [0, 1, 0, 1, · · · , 1, 1, 0, 1, 1]. A combination of zeros and
ones resembles a binary number. The set of all zeros corresponds to the smallest possible
positive integer number, i.e. 0, and the set of all ones corresponds to the largest possible
binary number constructed with N ones: 2N − 1. There is a simple recipe for generating
all possible integer numbers from 0 to 2N − 1: start from 0 and just keep adding 1 to get
the next one. The tricky part is to do it according to binary arithmetic, more precisely, to
implement the proper tracking of the digit overflow mechanism7. All modern computers use

6 There are better ways. We can be more selective about how we select items to pack. For example,
we can presort all items in the ascending order and put them one by one; if the current item does not fit,
there is no reason to probe even larger items. This will save computational time. Another way is to use the
simulated annealing algorithm (see section 1.5) to find a good enough solution.

7 In the decimal system, we cannot add 1 to the largest decimal symbol (9) without using an extra digit,
i.e. 9 + 1 = 10. Similarly, in the binary system, where the largest symbol is 1, 1 + 1 = 102.
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the binary system under the hood, but, strangely enough, we would have to put some effort
into the proper implementation of it8.

The pseudo code for probing all ~x combinations for N objects would be the following:

Pseudo code for the backpack problem

1. Start with ~x = [0, 0, 0, 0, · · · , 0, 0] consisting of N zeros.
2. Every new ~x will be generated by adding 1 to the previous ~x according to binary

addition rules.
• For example, xnext = [1, 0, 1, · · · , 1, 1, 0, 1, 1] + 1 = [1, 0, 1, · · · , 1, 1, 1, 0, 0].

3. For every new ~x, check if the items fit into the backpack and if the new packed
value is larger than the previously found maximally packed value.

4. We are done once we have tried all 2N combinations of ~x.

MATLAB’s realization of this algorithm is listed below

Listing 1.6: backpack_binary.m (available at http://physics.wm.edu/programming_
with_MATLAB_book/ch_optimization/code/backpack_binary.m)
function [items_to_take, max_packed_value, max_packed_volume] = ...

backpack_binary( backpack_size, volumes, values )
% Returns the list of items which fit in backpack and have maximum total

value
% backpack_size − the total volume of the backpack
% volumes − the vector of items volumes
% values − the vector of items values

% We need to generate vector x which holds designation: take or do not take
% for each item.
% For example x=[1,0,0,1,1] means take only 1st, 4th, and 5th items.
% To generate all possible cases, go over all possible combos of 1 and 0
% It is easy to see the similarity to the binary number presentation.
% We will start with x=[0, 0, 0, ... ,1]
% and add 1 to the last element according to the binary arithmetic rules
% until we reach x=[1, 1, 1, ... ,1] and
% then x=[0, 0, 0, ... , 0], which is the overfilled [111..1] +1.
% This routine will sample all possible combinations.

% nested function does the analog to the binary 1 addition
function xout=add_one(x)

xout = x;
for i=N:−1:1

8 There are MATLAB functions that deal with the conversion to and from binary numbers.
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xout(i)=x(i)+1;
if (xout(i) == 1 )

% We added 1 to 0. There is no overfill, and we can stop here.
break;

else
% We added 1 to 1. According to the binary arithmetic,
% it is equal to 10.
% We need to move the overfilled 1 to the next digit.
xout(i)=0;

end
end

end

% initialization
N=length(values); % the number of items
xbest=zeros(1,N); % we start with empty backpack, as the current best
max_packed_value=0; % the empty backpack has zero value

x=zeros(1, N); x(end)=1; % assigning 00000..001 the very first choice set

while ( any(x~=0) ) % while the combination is not [000..000]
items_volume = sum(volumes .* x);
items_value = sum(values .* x);
if ( (items_volume <= backpack_size) && (items_value > max_packed_value)

)
xbest=x;
max_packed_value=items_value;
max_packed_volume=items_volume;

end
x=add_one(x);

end

indexes=1:N;
items_to_take=indexes(xbest==1); % converting x in the human notation
end

The interesting part of the above code is the add_one subfunction which does binary addition.
Another feature is the use of indexes at the next to last line. This returns a human
readable list of the objects to pack, instead of ~x consisting of zeros and ones. The rest
is just bookkeeping.

We can test the backpack algorithm with a list of the five items of various values and volumes

>> backpack_size=7;
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>> volumes=[ 2, 5, 1, 3, 3];
>> values =[ 10, 12, 23, 45, 4];
>> [items_to_take, max_packed_value] = ...

backpack_binary( backpack_size, volumes, values)

items_to_take = [1 3 4]
max_packed_value = 78

As you can see the algorithm suggests to take the first, third, and fourth items to maximize
the total packed value. There is no better solution than this, as we can see by solving this
problem ourselves.

The algorithm searches through all combinations of 5 objects almost instantaneously. To go
over the list of 20 items, my computer takes 24 seconds. It would take almost 1000 times
longer to sort through 30 items, i.e. more than 6 hours. It is unpractical to use this algorithm
to sort through even a slightly longer list of objects. This is the price for the ability to find
the global optimum via probing all 2N combinations.

Words of wisdom

Use of brute force algorithms is never a good idea: they are fast to implement and
slow to use.

1.4.2 Traveling salesman problem

Suppose that a salesman has a list of N cities with given coordinates (x and y) to visit. The
salesman starts in the city labeled 1 and needs to be in the Nth city at the end of a route
(see fig. 1.8). We need to find the shortest route so that the salesman visits every city and
does it only once.
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Figure 1.8: The traveling salesman problem illustration. The N cities arrangement is shown
at the left; a possible sub optimal route shown in the middle; a shorter route is shown at the
right.

This problem has many connections to the real world. Every time you ask your navigator to
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find a route from one place to another, the navigator unit has to solve a very similar problem.
However, the navigator has to select intermediate locations and then find the shortest route.
If you choose the destination too far, the navigator may even complain that it has not enough
resources to do the planning and may suggest to choose an intermediate destination. Below
you will see why planning a long route with too many places to visit is a hard problem for
a computer (at least if a brute force approach taken).

Let’s estimate the problem size of our traveling salesman problem, i.e. how many possible
combinations exist. If we have N cities in total, the salesman can go from the first city to
N − 2 destinations. We subtract two because the first and last cities are predefined by the
problem. For the third city to visit, we have N − 3 choices. For the fourth city, we have
N − 4 cities. The sequence goes on until we have no choices. So the total number of choices
is given by

(N − 2)× (N − 3)× (N − 4)× · · · × 2× 1 = (N − 2)! (1.19)

This grows even faster than exponential dependence. Recall Stirling’s approximation: N ! ∼√
2πN(N/e)N . If we spend only a nanosecond to test every route consisting of 22 cities, it

would take about 77 years to go over all possible combinations since 20! ≈ 2.4× 1018. Now
you see why choosing a route is quite a hard problem for a navigator9.

Let’s not be discouraged by the above numbers. We will be able to select the shortest route
from 10 cities within a minute even if we go over all combinations. As before, the hard part
is to find a way to go through all possible permitted combinations of the cities. We do it
by noticing that a complete route involves all cities, so another route could be achieved by
swapping positions of any two cities in the route assignment, i.e. by a permutation. So, we
need to find a way to go over all possible permutations.

Permutation generating algorithm

Luckily, there are permutation generating algorithms available. MATLAB has one of them
implemented as the perms function. Unfortunately, it is not suitable for our needs since
it generates and stores a list of all permutations. This consumes all available computer
memory even for a modest N ≈ 15. Instead, we will use the method which goes back to 14th
century India (see “Generating all permutations” in [4]). The pseudo code of this algorithm
is shown below

9 As with the backpack problem, there are better algorithms. Some are smart about ruling out sub optimal
routes without even testing them; they still find the global minimum but with fewer tests. For example, the
Held-Karp algorithm does it in O(2NN2) steps [1], though this one requires quite a lot of memory to work.
Other algorithms find a good enough route. For example, the simulated annealing algorithm, which we will
see very soon in section 1.5.
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Next lexicographic permutation generating algorithm

1. Start with the set sorted in the ascending order, i.e. p = [1, 2, 3, 4, · · · , N −
2, N − 1, N ]

2. Find the largest index k such that p(k) < p(k + 1).
• If no such index exists, the permutation is the last permutation.

3. Find the largest index l such that p(k) < p(l).
• There is at least one l = k + 1

4. Swap p(k) with p(l).
5. Reverse the sequence from p(k+1) up to and including the final element p(end).
6. We have a new permutation. If we need another, repeat from the step 2.

To generate a new permutation, it only needs to know the previous one, so the algorithm
memory footprint is negligible. The name lexicographic comes from the requirement of the
items to be sortable (i.e. we can compare their values). In the past, they used letters since
there is the particular order (i.e. ranking) of them in the alphabet. We do not have to use
letters, since numbers naturally possess this property. See MATLAB’s implementation of
this algorithm below

Listing 1.7: permutation.m (available at http://physics.wm.edu/programming_with_
MATLAB_book/ch_optimization/code/permutation.m)
function pnew=permutation(p)

% Generates a new permutation from the old one
% in such a way that new one will be lexicographically larger.
%
% If one wants all possible permutations, she
% must prearrange elements of the permutation vector p
% in ascending order for the first input, and then

% feed the output of this function to itself.
%
% Elements of the input vector allowed to be not unique.
%
% See "The Art of Computer Programming, Volume 4:
% Generating All Tuples and Permutations" by Donald Knuth
% for the discussion of the algorithm.
%
% This implementation is optimized for MATLAB. It avoids cycles
% which are costly during execution.

N=length(p);
indxs=1:N; % indexes of permutation elements

% looking for the largest k where p(k) < p(k+1)
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k_candidates=indxs( p(1:N−1) < p(2:N) );
if ( isempty(k_candidates) )

% No such k is found thus nothing to permute.
pnew= p;

% We must check at the caller for this special case pnew==p
% as condition to stop.
% All possible permutations are probed by this point.
return;
end
k=k_candidates(end); % note special operator 'end' the last element

of array

% Assign the largest l such that p(k) < p(l).
% Since we are here at least one solution is possible: l= k+1
indxs=indxs(k+1:end); % we need to truncate the list of possible

indexes
l_candidates=indxs( p(k) < p (k+1:end) );
l=l_candidates(end);

tmp=p(l); p(l)=p(k); p(k)=tmp; % swap p(k) and p(l)

%reverse the sequence between p(k+1) and p(end)
p(k+1:end)=p( end:−1:k+1 );
pnew=p;

end

The important thing to mention about the above code is that once the last permutation is
reached (all items will be sorted in descending order), it will output the same combination
that was the input. It is up to us to check for this condition to stop the search.

Combinatorial solution of the traveling salesman problem

Once we have a permutation generating algorithm, the rest is straight forward bookkeeping
to find the shortest route. MATLAB’s solution of the problem is shown below

Listing 1.8: traveler_comb.m (available at http://physics.wm.edu/programming_with_
MATLAB_book/ch_optimization/code/traveler_comb.m)
function [best_route, shortest_distance]=traveler_comb(x,y);
% x − cities x coordinates
% y − cities y coordinates

% helper function
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function dist=route_distance(route)
dx=diff( x(route) );
dy=diff( y(route) );
dist = sum( sqrt(dx.^2 + dy.^2) );

end

% initialization
N=length(x); % number of cities
init_sequence=1:N;

p=init_sequence(2:N−1); % since we start at the 1st city and finish in the
last

pold=p*0; % pold MUST not be equal to p

route=[1,p,N]; % any route is better than none
best_route=route;
shortest_distance=route_distance(route);
% show the initial route with the first and the last cities marked with 'x'
plot( x(1), y(1), 'x', x(N), y(N), 'x', x(2:N−1), y(2:N−1), 'o', x(route),

y(route), '−');

while ( any(pold ~=p) ) % as long as the new permutation is different from
the old one
% Notice the 'any' operator above.
pold=p;
p=permutation(pold);
route=[1,p,N];
dist=route_distance(route);
if (dist < shortest_distance)

shortest_distance=dist;
best_route=route;
% Uncomment the following lines to see the currently best route
%plot( x(1), y(1), 'x', x(N), y(N), 'x', x(2:N−1), y(2:N−1), 'o', x

(route), y(route), '−');
%drawnow; % forces the figure update

end
end
% plot all the cities and the best route
plot( x(1), y(1), 'x', x(N), y(N), 'x', x(2:N−1), y(2:N−1), 'o', x(

best_route), y(best_route), '−');

end
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The author would like to attract the reader’s attention to the helper function route_distance
which calculates the route distance, as the name suggests. Here we piggyback on MATLAB’s
ability to generate an array with elements output in the order specified by the array of in-
dexes (route in this case). The code also can plot the currently found best route as it
executes.

Let’s see how it copes with selection of the shortest route connecting 12 cities. We assign
their coordinates rather randomly for the test shown below

>> x = [8.5 3.5 9.5 4.5 2.5 3.5 6.5 5.5 4.5 8.5 6.5 5.5];
>> y = [9.5 3.5 7.5 7.5 4.5 6.5 1.5 1.5 5.5 8.5 9.5 2.5];
>> the_shortest_route = traveler_comb(x,y)

the_shortest_route = [1 3 10 11 4 6 9 5 2 8 7 12]

The shortest route connecting the cities with given above coordinates is shown in fig. 1.9.
The author’s computer takes about 90 seconds to find this route.
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Figure 1.9: The shortest route connecting 12 cities. The first and the last cities to visit are
marked with ‘x’ and the others are marked with ‘o’.
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1.5 Simulated annealing algorithm

We see that probing the full space permitted by combinatorics is not practical even for a
seemingly small set of options. However, nature seems to handle the problem of energy
minimization without any trouble. For example, if you think about a piece of metal, it has
many atoms (the Avogadro number 6× 1023 gives an order of magnitude estimate). Each of
the atoms can be in many different states. So the problem space must be humongous. Yet, if
we slowly cool the metal, i.e. anneal, then the system will reach the minimum energy state.

In 1953, Metropolis and coworkers suggested an algorithm which can mimic the distribution
of system states according to energies of the states and the overall temperature of the whole
physical system (see [5]), i.e. according to the Boltzmann energy distribution law. This law
states that the probability to have energy E is given by

p(E) ∼ exp

(
−E − E0

kT

)
(1.20)

where E0 is the energy of the lowest energy state, k is the Boltzmann constant, and T is
the temperature of the system10. Recall that one of the names of the merit function is
energy, which is very handy here. Note that if temperature goes to zero, the probability of
any higher than global minimum energy state drops to zero according to the above equation.
Now we have an idea for the general algorithm: evolve the system according to the Metropolis
algorithm to mimic its physical behavior and simultaneously lower the temperature (anneal)
to force the system into the lowest energy state. We spell out all the steps of this algorithm
below.

10 The derivation of this law is done in Statistical Mechanics and Thermodynamics courses.
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Simulated annealing or modified Metropolis algorithm

1. Set the temperature to a high value, so kT is larger than typical energy (merit)
function fluctuation.

• This requires some experiments if you do not know this a priori
2. Assign a state ~x and calculate its energy E(~x)
3. Change, somehow, the old ~x to generate a new one, ~xnew

• ~xnew should be somewhat close or related to the old optimal ~x
4. Calculate the energy at the new point Enew = E(~x).
5. If Enew < E then x = xnew and E = Enew

• i.e. we move to the new point of the lower energy
otherwise, move to the new point with probability

p = exp

(
−Enew − E

kT

)
(1.21)

6. Decrease the temperature a bit, i.e. keep annealing.
7. Repeat from the step 3 for a given number of cycles.
8. ~x will hold the local optimum solution.

You are probably wondering what the temperature of an optimization problem is. Well, it is
just a parameter, i.e. a number, which a physicist would insist to call temperature because
of its overall resemblance to the one in physics. So, do not worry — you do not need to put
a thermometer inside of your computer.

In finite time (limited number of cycles), the algorithm is guaranteed to find only the local
minimum11. But there is a theorem (see [3]) which states:

The probability to find the best solution goes to 1 if we run the algorithm for a longer
and longer time with a slower and slower rate of cooling.

Unfortunately, this theorem is of no use since it does not give a constrictive recipe of how
long to run the algorithm. It is even suggested that it will need more cycles than the brute
force combinatorial search. However, in practice a good enough solution, i.e. quite close to
the global minimum, can be found in quite a short time with a quite small number of cycles.

A nice feature of the simulated annealing algorithm is that it is not limited to discrete space
problems and can be used for problems accepting real values of ~x components. The algorithm
also has the ability to climb away from a local minimum if it is given enough time.

To make an efficient (fast) implementation of this algorithm, we need to choose the optimal

11 Actually, if the final temperature is not zero, the final x could be away from the minimum due to a
finite probability of going to the higher energy state at the step 5 above.
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cooling rate12 and the proper way to modify ~x, so that the new value is not changing too
much, i.e. majority of the time we are in the vicinity of the optimal solution. It is quite
challenging to make the right choices.

1.5.1 The backpack problem solution with the annealing algorithm

We will show the solution of the backpack problem with the simulated annealing algorithm
below. As we discussed above, the main challenge is to find a good routine to generate a
new candidate for the ~xnew which should be related to the previous best ~x. We do not want
to randomly sample arbitrary positions of the problem space.

Recall that ~x generally looks like [0, 1, 1, 0, 1, · · · , 0, 1, 1], so we should randomly toggle or
mutate a small subset of the bits. We do it randomly13, so we do not need to keep track of
flipped or not flipped positions. This is done by the change_x subfunction in listing 1.9.

The rest is quite straightforward, as long as we remember that we are looking for the max-
imum value in the backpack. The Metropolis algorithm is designed for merit function min-
imization. So, we choose our merit function to be the negative value of all items in the
backpack. Note that a random mutation could lead to a state with an overfilled backpack.
So, we need to add a penalty for the case of the overfilled backpack. The positive number
proportional to the overfilled portion is a good choice, which is a good way to send feedback
to the minimization algorithm that such states are not welcomed.

Words of wisdom

The penalty points, which are usually taken for incorrect homework assignment com-
pletion, should be called the negative feedback strength points. They help students to
see how far from the optimum they are. Also, control theory teaches us that the most
effective feedback is negative feedback.

All of these points are taken care of in the backpack_merit subfunction shown in listing 1.9.
The rest is just bookkeeping and the straightforward realization of the simulated annealing
algorithm. The code for the backpack problem implementing this method is shown below

Listing 1.9: backpack_metropolis.m (available at http://physics.wm.edu/programming_
with_MATLAB_book/ch_optimization/code/backpack_metropolis.m)
function [items_to_take, max_packed_value, max_packed_volume] =

backpack_metropolis( backpack_size, volumes, values )
% Returns the list of items which fit in the backpack and have the maximum

total value.

12 If it is too fast we will get stuck in a local minimum and if it is too slow we will waste a lot of CPU
cycles by probing around global minimum.

13 If you have a choice to make and you cannot reason which is better, then make a decision by a coin
flip, i.e. randomly. After all, any solution is better than none.
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% Solving the backpack problem with the simulated annealing (aka Metropolis)
algorithm.

% backpack_size − the total volume of backpack
% volumes − the vector of items volumes
% values − the vector of items values

N=length(volumes); % number of items

function xnew=change_x(xold)
% x is the state vector consisting of the take or no take flags
% (i.e. 0/1 values) for each item
% The new vector will be generated via random mutation
% of every take or no take flag of the old one.
flip_probability = 1./N; % in average 1 bit will be flipped
bits_to_flip = (rand(1,N) < flip_probability );
xnew=xold;
xnew(bits_to_flip)=xor( xold(bits_to_flip) , 1 ); % xor operator flips

the chosen flags
if ( any( xnew ~= xold) )

% at least 1 flag is flipped, so we are good to return
return;

else
% none of the flags is flipped, so we try again
xnew=change_x(xold); % recursive call to itself

end
end

function [E, items_value, items_volume] = backpack_merit(x, backpack_size,
volumes, values)
% Calculates the merit function for the backpack problem
items_volume=sum(volumes .* x);
items_value=sum(values .* x);
% The Metropolis algorithm is the minimization algorithm,
% thus, we flip the packed items value (which we are maximizing)
% to make the merit function to be minimization algorithm compatible.
E= − items_value;

% we should take care of the situations when the backpack is overfilled
if ( (items_volume > backpack_size) )

% Items do not fit and backpack, i.e. bad choice of the input vector
'x'.

% We need to add a penalty.
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penalty=(items_volume−backpack_size); % overfill penalty
% The penalty coefficient (mu) must be quite big,
% but not too big or we will get stack in a local minimum.
% Choosing this coefficient require a little tweaking and
% depends on size of backpack, values and volumes vectors
mu=100;
E=E+mu*penalty;

end
end

%% Initialization
% the current 'x' is the best one, since no other choices were checked.
xbest=zeros(1,N);
[Ebest, max_packed_value, max_packed_volume]=backpack_merit(xbest,

backpack_size, volumes, values);

Ncycles=10000; % number of annealing cycles
kT=max(values)*5; % should be large enough to permit even large and non

optimal merit values
kTmin=min(values)/5; % should be smaller than the smallest step in energy
% we choose annealing coefficient by solving: kTmin=kT*annealing_coef^

Ncycles
annealing_coef= power(kTmin/kT, 1/Ncycles); % the temperature lowering rate

best_energy_at_cycle=NaN(1,Ncycles); % this array is used for illustrations
of the annealing

% the main annealing cycle
for c=1:Ncycles

xnew=change_x(xbest);
[Enew, items_value_new, items_volume_new] = ...

backpack_merit(xnew, backpack_size, volumes, values);

prob=rand(1,1);
if ( (Enew < Ebest) || ( prob < exp(−(Enew−Ebest)/kT) ) )

% Either this point has smaller energy
% and we go there without thinking
% or
% according to the Metropolis algorithm
% there is the probability exp(−dE/kT) to move away from the

current optimum
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xbest = xnew;
Ebest = Enew;
max_packed_value=items_value_new;
max_packed_volume=items_volume_new;

end
% anneal or cool the temperature
kT=annealing_coef*kT;

best_energy_at_cycle(c)=Ebest; % keeping track of the current best
energy value

end
plot(1:Ncycles, best_energy_at_cycle); % the annealing illustrating plot
xlabel('Cycle number');
ylabel('Energy');

% the Metropolis algorithm can return a non valid solution,
% i.e. with combined volume larger than the volume of the backpack.
% For simplicity, no checks are done to prevent it.
indexes=1:N;
items_to_take=indexes(xbest==1);

end

At first we will test our code with the same inputs as we did for the binary search algorithm
in section 1.5.1

>> backpack_size=7;
>> volumes=[ 2, 5, 1, 3, 3];
>> values =[ 10, 12, 23, 45, 4];
>> [items_to_take, max_packed_value] = ...

backpack_metropolis( backpack_size, volumes, values)

items_to_take = [1 3 4]
max_packed_value = 78

As you can see, the result is exactly the same as in the case of the search over the full
combinatorial space. This is not too surprising, since we did 10000 cycles of probing (or
annealing) for the problem with only 5 items whose parameter space is 25 = 32. Let’s test
it with the 20 items problem:

>> Vb=35;
>> val = [ 12 13 22 24 97 30 21 67 91 43 36 10 52 30 15 73 43 25 55 6 ];
>> vol = [ 20 27 34 23 4 22 32 2 30 34 34 24 8 23 18 30 14 4 27 22];
>> tic; [items, max_val, max_vol] = backpack_binary(Vb, vol, val); toc
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Elapsed time is 23.823041 seconds.
>> items
items = 5 8 13 17 18

>> max_val
max_val = 284

>> tic; [items, max_val, max_vol] = backpack_metropolis(Vb, vol, val); toc
Elapsed time is 0.515279 seconds.

>> items
items = 5 8 13 17 18

>> max_val
max_val = 284

As we can see, both algorithms produced the same result, i.e. the list of items to choose and
the maximum packed value of 284. Your answer might be slightly different when you run
backpack_metropolis, since there is a small probability that on the last step the algorithm
would end up with less favorable energy state (i.e. away from optimal). The binary search
takes more than 20 seconds, while the simulated annealing search takes only a half of a
second. The best part is that, even for the larger problem with more items to choose from,
it will still take only a half of a second. So the small probability to get sub optimal, but still
very good, results is a small price to pay for the drastic increase in speed.
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Figure 1.10: The current lowest energy state vs. the annealing cycle number for different
total number of annealing cycles: 100 (left), 1000 (middle), and 10000 (right).

You might have noticed that the backpack_metropolis function produces the plot of the
merit or energy of the state used at the given cycle number of the annealing. This plot is
very useful to help in judging if the speed of annealing is chosen properly. Let’s have a look
at fig. 1.10. These plots are generated for the above problem with 20 items and exactly the
same code of backpack_metropolis with only one difference: the number of cycles Ncycles
chosen was 100, 1000, and 10000. When we choose to do only 100 cycles, the algorithm
quickly locked itself in a local minimum (as shown in the left insert), with energy somewhat
higher than the lowest possible energy of -284. For the 1000 cycles case (shown in the middle
insert), the algorithm explores energy space and went quite high in energy, but after about
200 cycles, it starts to search around the global minimum. In the last case of 10000 cycles
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(shown in the right insert), the story is somewhat similar, except we converged to global
minimum only after about 6000 cycles.

So, we would say that 100 cycles are too few to cool the system sufficiently. The 10000
cycles case seems to be cooling too slowly since we spend a lot of cycles wandering around.
However, probability to end up in the global minimum is the highest in this case. The 1000
cycles case seems to be the best for this particular set of input parameters, since we find a
good answer much faster than with 10000 cycles (and the solution’s energy seems to be the
same), while a run with 100 cycles produces a quick, but sub optimal, solution.

Generally, we would like the state energy to behave similarly to the middle and the right
insert of fig. 1.10, where the energy oscillates at the beginning and then moves mostly
downwards toward the minimum (global or maximum). Behavior like this is the sign of the
proper choice of the annealing rate.
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Figure 1.11: The current lowest energy state vs. the annealing cycle number for different
annealing temperatures: in the left insert the temperatures 1000 times smaller than in
the middle, and in the right insert the temperature is 1000 times larger. In all cases, the
simulation is ran for 100 cycles.

Another tricky part is the proper selection of the initial and final temperatures. Have a look
at fig. 1.11. These plots are all produced with the same code as in listing 1.9 but with only
100 overall cycles. In one case, we reduce both the initial and final temperatures by 1000
times, and in the other case both temperatures are 1000 times higher. For the case of the
low temperatures (the left insert), the algorithm locks itself in the local minimum which
is higher than the global one. You can see it by the presence of only downward changes
in the energy plot. For the higher temperature case (the right insert), the algorithm is
continuously jumping up and down, since for high temperatures, upward motion is almost as
likely as downward motion. Essentially, the temperature is never cold enough for the system
to settle in any minimum. It is clear that the resulting solution for this case is the worst one:
notice the scale for the energy and the fact that final energy is positive, i.e. this is an illegal
solution with an overfilled backpack. The middle insert, with the intermediate temperature
settings, shows the behavior when the temperature parameters are better tuned: the energy
climbs out of the local minimum around cycle 15, and then has mostly downhill dynamics
with decreasing energy, as we approach the end of the annealing.
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1.6 Genetic algorithm

The idea of the genetic algorithm is taken from nature, which is usually able to find the
optimal solution via natural selection (see [2]). This algorithm has many modifications but
the main idea is shown below

Genetic algorithm

1. Generate a population (set of {~x}).
• It is up to you to decide how large this set should be.

2. Find the fitness (i.e. merit) function for each member of the population.
3. Remove from the pool all but the most fit.

• How many should stay is up to heuristic tweaks.
4. From the most fitteda (parents) breed a new population (children) to the size of

the original population.
5. Repeat several times starting from step 2.
6. Select the fittest member of your population to be the final solution.
a We are literally implementing “the survival of the fittest”. Thus, the name for the merit or energy

function is “fitness” for the genetic algorithm.

As usual, the trickiest part is to generate a new ~x, i.e. a child, from the older ones. Let’s
use the recipe provided by nature. We will refer to ~x as a chromosome or genome (hence the
name of the algorithm).

Generation of the children’s genomes

1. Choose two parents randomly from the most fit set.
2. Crossover or recombine parents chromosomes: take genes. (i.e. ~x components)

randomly from either of the parents and assign them to the new child chromo-
some.

3. Mutate (i.e. change) randomly some of the child’s genes.

Some algorithm modifications allow parents to be in the new cycle of selection, others elim-
inate them in the hope of moving away from a local minimum.

To find a good solution, you need a large population, since this lets you explore a larger
parameter space. Think about the evolution strategies of microbes versus humans. However,
this in turn leads to a longer computational time for every selection cycle. A nice feature of
the genetic algorithm is that it suits the parallel computation paradigm: you can evaluate
the fitness of each child on a different CPU and then compare their fitnesses.

As in any other optimum search algorithm, except the full combinatorial search, the genetic
algorithm is not guaranteed to find the global optimum in finite time.
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1.7 Self-Study

General comments:

• Do not forget to run some test cases.

Problem 1: Prove (analytically) that the golden section algorithm R is still given by the
same expression even if we need to choose a′ = x1 and b′ = b.

Problem 2: Assume that the initial spacing between initial bracket points is h. Estimate
(analytically) how many iterations it requires to narrow the bracket to the 10−9 × h space.

Problem 3: Implement the golden section algorithm. Do not forget to check your code
with simple test cases. Find where the function E1(x) = x2 − 100 ∗ (1 − exp(−x)) has a
minimum.

Problem 4: For the coin flipping game described in section 12.2, find the optimal (max-
imizing your gain) betting fraction using the golden section algorithm and Monte Carlo
simulation. Feel free to reuse provided complimentary codes.

Note: you need a lot of game runs to have reasonably small uncertainty for the merit function
evaluations. I would suggest to average at least 1000 runs with the length of 100 coin flips
each.

Problem 5: Find the point where the function

F (x, y, z, w, u) = (x− 3)2 + (y − 1)4 + (u− z)2 + (u− 2 ∗ w)2 + (u− 6)2 + 12

has a minimum. What is the value of F (x, y, z, w, u) at this point?

Problem 6: Modify the provided traveling salesman combinatorial algorithm to solve a
slightly different problem. You are looking for the shortest route which goes through all
cities, while it starts and ends in the same city (the first one), i.e. we need a close loop route.

Coordinates of the cities are provided in the 'cities_for_combinatorial_search.dat'14

file: the first column of the data file corresponds to ’x’ coordinate and the second one to ’y’
coordinate. The coordinates of the city where the route begins and ends are in the first row.

Provide your answers to the following questions:

• What is the sequence of all cities in the shortest route?

• What is the total length of the best route?

• Provide the plot with the visible cities’ locations and the shortest route.

14The file is available at http://physics.wm.edu/programming_with_MATLAB_book/ch_optimization/
data/cities_for_combinatorial_search.dat
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Problem 7: Implement the Metropolis algorithm to solve the above problem. A good way
to obtain a new test route is to randomly swap two cities along the route. You need to
choose the number of cycles and initial and final temperature (kT ). Provide the reasons for
your choices.

As a test, compare this algorithm’s solution with the above combinatorial solution.

Now load the cities coordinates from the 'cities_for_metropolis_search.dat'15 file.
Find the shortest route for this set of cities.

• What is the sequence of all cities in the shortest route?

• What is the total length of the best route?

• Provide the plot with the visible cities’ locations and the shortest route.

15The file is available at http://physics.wm.edu/programming_with_MATLAB_book/ch_optimization/
data/cities_for_metropolis_search.dat
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