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I.  Introduction
Feedback is  a  mechanism for  regulating  a  physical  system so that  it  maintains  a

certain  state.  Feedback  works  by  measuring  the  current  state  of  a  physical  system,
determining how far the current state is from the desired state, and then automatically
applying a control signal to bring the system closer to the desired state. This process is
repeated iteratively to bring the system to the desired state and keep it there.

Feedback can be used very effectively to stabilize the state of a system, while also
improving its performance: Engineers use feedback to control otherwise unstable designs;
op-amps use feedback to stabilize and linearize their gain; and physicists use feedback to
stabilize and improve the performance of their instruments.

A.  Feedback in engineering

Feedback is ubiquitous in engineering. Its application has led to device features and
machines which would not otherwise function. Here are few examples:

Climate control: A sensor measures the temperature and humidity in a room and then
heats or cools and humidifies or dehumidifies accordingly.

Automobile cruise control: The car measures its speed and then applies the accelerator or
not depending on whether the speed must be increased or decreased to maintain the target
speed.

Highly maneuverable fighter jets: The F-16 Falcon fighter jet is an inherently unstable
aircraft (i.e. the airframe will not glide on its own). The F-16 does fly because 5 onboard
computers  constantly  measure  the  aircraft’s  flight  characteristics  and  then  apply
corrections  to  the control  surfaces  (i.e.  rudder,  flaps,  ailerons,  etc…) to keep it  from
tumbling out of control. The advantage of this technique is that the aircraft has the very
rapid response and maneuverability  of a naturally  unstable airframe, while also being
able to fly.

B.  Feedback in electronics:

Op-amps  use  feedback  to  achieve  very  high  linearity  and  predictability  for  their
closed-loop gain by sacrificing some of their extremely high open-loop gain.

Another common application of feedback in electronics is in precision, fast- response
power supplies. Constant current and constant voltage power supplies which have a high
degree of stability use feedback to regulate their current or their voltage, by measuring
the  current  and voltage  across  a  precision  shunt  resistor  and  then  using  feedback  to
automatically correct for any deviations from the desired output. Feedback also allows
the power supply to adjust its voltage or current very quickly and controllably in response
to a change in load.
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C.  Feedback in physics

Feedback  has  become  a  familiar  tool  for  experimental  physicists  to  improve  the
stability of their instruments. In particular, physicists use feedback for precise control of
temperature, for stabilizing and cooling particle beams in accelerators, for improving the
performance of atomic force microscopes, for locking the optical frequency of lasers to
atomic transitions,  and referencing quartz oscillators to ground state atomic hyperfine
microwave transitions in atomic clocks, to name just a few example.

Temperature  control: Many  delicate  physics  devices,  such  as  crystals,  lasers,  RF
oscillators,  and  amplifiers,  require  their  temperature  to  be  very  stable  in  order  to
guarantee their performance. For example, the wavelength of diode lasers generally has a
temperature dependence on the order of 0.2 nm/C, but requires a stability of 10-6 nm for
experiments.

Stochastic  cooling:  In  a  particle  accelerator,  the  transverse  momentum  spread  of
particles must be reduced to a minimum. The reduced momentum spread increases the
particle density, or beam luminosity, and consequently the probability of collisions with a
similar counter-propagating particle beam in the detector area. Stochastic cooling works
by measuring the transverse positions and momenta of the particles as they pass through a
section of the accelerator, and then applying appropriate momentum kicks to some of the
particles at other points in the accelerator ring to reduce the overall transverse momentum
spread. The process is repeated until the momentum spread is sufficiently reduced. The
1984 Nobel Prize in Physics was awarded in part to Simon van der Meer for his invention
of stochastic cooling which contributed to the discovery of the W and Z bosons (weak
force mediators) at CERN.

Atomic force microscope:  An atomic force microscope uses a very sharp tip (just a few
nanometers in size at the very tip) which is scanned back and forth just a few nanometers
above the surface to be imaged. Instead of scanning the tip at a constant height above the
surface,  which could lead to the tip actually  running into a bump on the surface,  the
microscope uses feedback to adjust the tip height such that the force (from the surface
atoms) on the tip is constant.

Laser locking: Many experiments in atomic and optical physics require lasers which have
a very stable optical frequency. The optical frequency of the laser is locked by measuring
the optical frequency difference between the laser and an atomic transition and using
feedback to set this difference to a constant value. Lasers can be routinely stabilized with
feedback  to  better  than  1  MHz out  of  3x1014 Hz  (about  1  part  per  billion),  though
stabilities close to 1 Hz have been reported after heroic efforts.

Atomic clocks: In an atomic clock, the frequency of an RF oscillator (a quartz crystal for
example) is compared to that of a ground state atomic hyperfine microwave transition
(6.8 or 9.2 GHz). The frequency difference is measured and the frequency of the RF
oscillator is corrected by feedback. The process is constantly repeated to eliminate any
drift in the frequency of the RF oscillator. Atomic fountain clocks can achieve accuracies
in the range of 1 part in 1015, and plans are underway to construct optical atomic clocks
with accuracies and stabilities of about 1 part in 1018.
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II. Feedback
In this section we introduce the main elements of a generic feedback model.

A. System

Consider  a  simple  system  characterized  by  a  single  variable  S.  Under  normal
conditions  the  system  has  a  steady  state  value  of  S=S0 which  may  vary  and  drift
somewhat over time due to the variation of environmental variables  v which we cannot
measure  or  are  unaware of.  We possess  a  mechanism for  measuring the  state  of  the
system as well as a control input u with which we can use to modify the state S of the
system. In summary, the system has the following functional form  S(u; v; t). We will
make the final assumption that S is monotonic with u in the vicinity of  S0 (i.e. that the
plot of  S vs.  u does not have any maxima or minima, and that  dS/du is either always
positive or always negative).

Figure 11.1 shows a conceptual schematic of the relationship between the system, the
variables u and v, and the measurement of the system state S.

System

State: S=S0
Measurement of S

Control u
Modifies S

unknowns v
modify S

System

State: S=S0
Measurement of S

Control u
Modifies S

unknowns v
modify S

Figure 11.1: Conceptual schematic of system

B.  Objective 

Our objective is to set or lock the state of the system to a desired value S=Sd and keep
it  there  without  letting  it  drift  or  vary  over  time,  regardless  of  variations  in  the
environmental variables v.

C.  Feedback model

We will set or lock the state of the system to S=Sd with the following procedure (see
also figure 11.2):

1.  Measure the state S of the system.
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2.   Determine  how far  the  system is  from its  desired  set  point  by  defining  an  error
variable, e=S-Sd.

3.  Calculate a trial control value u=u(e).

4.   Feed the calculated control value, u(e), back into the control input of the system S.

5.  The state of the system changes in response to the change in the control value.

6.   Return to step 1.

If we repeat  this feedback cycle  indefinitely with an appropriately calculated
control value u(e), then the system will converge to the state S=Sd and remain there
even under the influence of small changes to other variables (i.e. v) which influence
the value of the state S.

This feedback model can be adapted to include several state variables and several
feedback variables.

System

State: SSd
Measurement of S

Control u
Modifies S

unknowns v
modify S

Calculate error e=S-Sd

Calculate u=u(e)

System

State: SSd
Measurement of S

Control u
Modifies S

unknowns v
modify S

Calculate error e=S-Sd

Calculate u=u(e)

Figure 11.2: Conceptual schematic of system with the feedback loop.

In section III, we discuss a frequently used expression for calculating the feedback
control variable u(e).

III. PID Feedback Control
The most popular type of feedback stabilization control, u(e), is Proportional-Integral-

Derivative  (PID)  gain  feedback.  PID  is  very  effective  and  easy  to  implement.  The
expression for u(e) depends only on the error signal e=S-Sd and is given by

 
t

DIP te
dt

d
gdttegtegteu

0

)()()();(  (11.1)

where gP, gI, and gD are respectively the proportional, integral, and derivative gains. We
also note that gP, gI, and gD do not have the same units. We will assume for simplicity that
gP is dimensionless in which case u(e) has the same units as S.
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A.  Time evolution of the system with PID feedback control

We are now in a position to calculate the time evolution of the system under the
influence of feedback. Without feedback, the system would remain in the state S0:

0)( StS feedbackno  (11.2)

S0 may vary in time, but we will ignore this effect until part III.C.

In the presence of feedback, the state of the system at time t+Δt (step 5) depends on
the state of the system without feedback, S0, which has been modified by the control input
variable u(e). We now make the following simplifying assumption that the control input
variable,  u(e), “controls” or modifies the state of the system  S through the process of
addition.  In this  case,  the system state  variable  S evolves  according to  the following
equation:

);()( 0 teuSttS  (11.3)

We can convert this equation to an integro-differential equation, if we assume that the
system has a characteristic  reponse time   (small).   In this  case,  equation 3 becomes
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dt

d
gdttegtegStS
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d
tS

0
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B. Special case: pure proportional gain feedback

As a limiting case we consider pure proportional gain feedback (gI=0 and gD=0). We 
study this special case, because it is the basis for op-amp feedback and is also the 
simplest form of feedback. For gI=0 and gD=0, equation 4 becomes

)()()( 0 tegStS
dt

d
tS P (11.5)

We can solve this 1st order differential equation, for the initial condition S(t=0)=S0, with 
the same technique we used in chapter 3 (equations 17-21). After a little bit of integration
and algebra, which is left as an exercise to the reader, we find the following solution:
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Equation 11.6 shows that the system will converge to the state S=(S0-gPSd)/(1-gP) 
when feedback control is applied, so long as the exponential exponent is negative (i.e. 
gP<1), otherwise S will diverge. We note that gP<0 corresponds to negative feedback.

Figure 11.3 shows the response of a system for a dimensionless gain of gP=-10 and
state values S0=0.5 and Sd=1, with time measured in units of  (the system characteristic
response time).
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Figure  11.3:  System  response  with  pure  proportional  gain  feedback  control  and
parameters  gP=-10,  S0=0.5, and  Sd=1.  Time  is  measure  in  units  of   (the  system
characteristic response time).

As figure 11.3 makes clear, the system does not converge to the desired state S=Sd, 
though it does reach its final steady state value relatively quickly. If we restrict ourselves 
to negative feedback, then according to equation 10, the system will converge to the 
steady state value Sss of 

P

dP
ss g

SgS
S






1
0

(11.7)

Equation 11.7 indicates that the system can be made to converge to a steady state value 
Sss which is arbitrarily close to S=Sd just by increasing the gain. In fact, for infinite 
negative proportional gain (i.e gP-) the system does converge to Sss = Sd: This is the 
limit in which op-amps feedback operates.

A note of caution: On its own, equation 7 is a little misleading since it would seem to 
imply that large positive feedback, gP, would also produce Sss = Sd. Of course, this is 
not true since according to equation 11.6, the system will never achieve a steady state, but
instead will diverge forever.

C.  Solution for PI feedback control

A large  majority  of  PID feedback  controllers  are  actually  just  PI  controllers  (i.e.
proportional and integral gain, but no derivative gain), and so for simplicity we solve
equation 11.4 without the derivative gain term (gD=0). The inclusion of the derivative
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gain term is conceptually simple and follows the same treatment as PI feedback and is
left as an exercise to reader. Derivative gain is used to improve the time response of the
feedback, so that the system converges more quickly to its steady state value.

With the derivative gain term omitted, equation (11.4) becomes


t

IP dttegtegStS
dt

d
tS

0

0 )()()()(  (11.8)

We can convert this integro-differential equation to a 2nd order linear differential equation
with constant coefficients by taking the time derivative of equation (11.8) to obtain
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where we employed the substitution  e(t)=S-Sd. After combining similar terms, equation
(11.9) becomes
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Equation  11.10  is  an  inhomogeneous  2nd order  differential  equation  with  constant
coefficients. The full solution to equation (11.10) is given by
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The first two terms of equation 11.11 represent the homogeneous solution to equation
11.10,  while  the  3rd term is  the inhomogeneous  solution  to  the  equation  (it  does  not
depend on the initial condtions). A+ and A- are constants to be determined from the initial
conditions.

Equation  11.11  shows  that  the  system will  converge  to  the  state  S=Sd when
feedback control is applied, so long as + and - are negative (i.e. negative feedback),
otherwise  S will  diverge  (exactly  the  opposite  of  what  we  want  to  accomplish  with
feedback).

If we choose S(t=0)=S0 and dS(t=0)/dt=0 as our initial conditions, we can calculate
the constants A+ and A-. After a little bit of algebra, we find that
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In figure 11.4, the behavior of the system under PI feedback control is plotted for
several different parameters configurations.
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Figure 11.4: Time-evolution of a generic system with PI control feedback for S0=0.5 and
Sd=1. For the left hand plot the gain parameters are  gP=-10,  gI=-30, while for the right
hand plot the parameters are gP=-100, gI=-4000. The small overshoot in the left hand plot
is due to a small imaginary part in the exponential exponent of equation 11.11(a).

The primary purpose of integral gain is to provide essentially infinite gain at DC
(0 Hz), which guarantees that  Sss=Sd, as can be seen in figure 11.4. Figure 11.4 also
shows that the larger the gain, the faster the correction time of the feedback control
loop. 

D.  Fourier space analysis of noise suppression

One of the primary objectives of feedback is to make the system insensitive to noise
on the system state S, so that the system state stays locked to S=Sd regardless of external
influences.

In the absence of corrective feedback, external noise will cause the system state to
deviate from S=S0. External noise at a frequency  will cause the system state to oscillate
around its natural steady state such that S=S0+SNcos(t), where SN is the amplitude of the
oscillations. Following the standard Fourier space recipe of chapter 3, we replace cos(t)
with  exp(it), and then take the real part at the end of our calculations. In essence, we
must re-solve equations 11.8 with the following modification:
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Using the substitution of equation 11.13, equation 11.10 becomes
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Equation 11.14 has the same homogeneous solution as equation 11.10, but the 
inhomogeneous solution, Sih(t), differs and is given by the following expression
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We see that the noise term is present in the inhomogeneous solution, but with an 
additional factor modifying the amplitude of the noise. In the case of negative feedback 
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the modulus of this suppression factor, which we will call AN, is always less than unity 
and is given by the following expression

2222 1 




)g()g(
A

PI

N (11.16)

The plot in figure 11.5 shows the dependence of the suppression factor, AN, on 
frequency for different feedback schemes. The plot shows that a combination of 
proportional and integral control gives the best suppression of noise, except in the 
vicinity of the “resonant” frequency  /Ig . The high frequency drop-off of the 
suppression factor is not due to feedback but simply the natural response time  of the 
system which also suppresses noise.
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Figure 11.5: Comparison of the suppression factor, AN, for different feedback schemes. 
The feedback control loop parameters are gP=-100 and gI=-4000.

IV.  Reality
In practice, feedback is not quite as straightforward as presented in the previous 

section. 

A. Gain vs, Frequency

In the theoretical treatment of part III, we assumed that the proportional gain was
independent of frequency. In practice, gain will generally fall off at higher frequencies
due to natural low-pass RC filtering in an amplifier and the larger circuit.

As an example,  figure 11.6 shows a plot  of  the open-loop gain  of  an op-amp as
function of frequency, which has a clear drop-off in gain at higher frequencies.
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Figure 11.6: Open-loop gain of the OP27 op-amp (Analog Devices OP27 datasheet 
revision F, p. 10 (2006)).

B.  Phase shifts and positive feedback

The natural or stray RC filtering of an amplifier not only rolls off the gain at high 
frequencies, but also introduces a -/2 phase shift. If the feedback loop has a second stray
unintentional RC filter present (for example, the natural time response of the system), 
then a second -/2 phase shift is introduced. If the feedback gain is larger than 1 at the 
frequency at which the total accumulated phase is -, then the feedback loop goes into 
positive feedback which causes the state of the system to diverge or sometimes oscillate 
out of control.

C. Stray RC positive feedback compensation

One way to avoid having the system go into positive feedback is to purposely 
introduce an additional RC low-pass filter into the feedback loop. If this RC filter has a 
f3dB frequency which is sufficiently smaller than the frequency at which the positive 
feedback occurs then the attenuation of the filter can bring the gain below 1 when the - 
phase shift occurs. This way the feedback loop will no longer go into positive feedback 
above a certain frequency (of course there will not be any noise suppression or feedback 
action above this frequency either).
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