Transistors applications: AC amplifiers

Eugeniy E. Mikhailov

The College of William & Mary

Week 7

4 0 8

Summary of simple emitter follower

Advantages

- input impedance increase $Z_{in} = \beta R_e$
- power/current gain
- output does not depend on $β$
- simple \bullet

Summary of simple emitter follower

Advantages

- input impedance increase $Z_{in} = \beta R_e$
- power/current gain
- output does not depend on β
- **•** simple

Disadvantages

- input signal must be positive
	- $\bullet\,$ even more it should be above 0.6 V
- no voltage gain

4 0 8 1

 \blacktriangleleft A F

 \rightarrow \equiv \rightarrow \rightarrow

We need to do something with our simple emitter follower.

4 0 8

ヨト

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower Solution 2: AC-coupled biased-amplifier

NPN emitter follower

4 э 299

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

NPN emitter follower

4 ロ ト ィ *同* ト

-4 B +

NPN emitter follower

4 0 8

PNP emitter follower

NPN emitter follower

PNP emitter follower

Push-Pull emitter follower

 298

重 \mathbf{p}

イロトメ 倒下 メモトメ

Push-Pull emitter follower

 $V_{in}(t)$ $V_{\text{out}}(t)$

K ロ ⊁ K 個 ⊁ K 走 ⊁

 298

 ϵ 重

D

Push-Pull follower crossovers

Push-Pull follower crossovers

Push-Pull follower crossovers

Push-Pull emitter follower improved

 298

÷

4 **b**

 $4 \times 1 + 4 \times 1 + 4 \times 1 + 4$

Push-Pull emitter follower improved

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow

 \sim 重き ϵ 重 . p

AC-coupled emitter follower

 298

 ϵ 重 **b**

イロト イ団ト イミト

Design rules

• maximum output swing

$$
\bullet\ \ V_e=\ V_{cc}/2
$$

 \bullet disregarding $V_{be} = 0.6$ V

$$
\bullet \ \ V_b = V_e = V_{cc}/2
$$

- thus $R_1 = R_2$
- \bullet quiescent current $I_e = V_e / R_e$
- we want $I_{R_1+R_2} \gg I_b$
	- factor of 10 for a safe margin $I = -10L = 10I / 8$

$$
R_1 + R_2 = 10T_0 = 10T_e
$$

• thus $R_1 = R_2 = R_e \beta / 10$

AC-coupled emitter follower: capacitors choice

From AC point of view

4 0 8

AC-coupled emitter follower: capacitors choice

From AC point of view

• Input is RC high-pass

$$
\bullet \ \ C=C_1
$$

$$
\bullet \ \ R = R_1 || R_2 || \beta R_e
$$

4 0 8

•
$$
f_{3db} = \frac{1}{2\pi} \frac{1}{C_1(R_1||R_2||\beta R_e)}
$$

• with above rules
$$
R \approx R_1/2
$$

AC-coupled emitter follower: capacitors choice

From AC point of view

- Input is RC high-pass
	- $C = C_1$

$$
R = R_1 || R_2 || \beta R_e
$$

•
$$
f_{3db} = \frac{1}{2\pi} \frac{1}{C_1(R_1||R_2||\beta R_e)}
$$

- with above rules $R \approx R_1/2$
- Output is also RC high-pass

$$
\bullet \ \ C=C_2
$$

$$
\bullet \ \, R=R_L
$$

$$
\bullet \ \ f_{3db} = \tfrac{1}{2\pi} \tfrac{1}{C_2 R_L}
$$

- $\frac{a_{3ab}-a_{2\pi}}{a_{2\pi}}$ *C*₂ R_e $\frac{a_{12}}{a_{12}}$ *R_e*
	- factor of 10 for a safe margin $R_l = 10 R_e$

Common emitter (inverting) amplifier

 298

 \sim 造 **b**

K ロ ⊁ K 倒 ≯ K ミ ⊁

Common emitter (inverting) amplifier

- $I_c = I_e = (V_{in} 0.6V)/R_e$
- \bullet $V_{\alpha \mu} = V_{cc} R_c I_c$
- $V_{out} = V_{cc} R_c(V_{in} 0.6V)/R_e$
- $V_{out} = (V_{cc} + (0.6V)R_c/R_e) V_{in}R_c/R_e$
- \bullet gain $G = -R_c/R_e$
- attractive to put $R_e = 0$
	- **•** transistor model fails
	- transistor emitter resistance
		- $r_e = 25 mV/l_c$
	- \bullet gain *G* = −*R_c*/*r*_e

AC-coupled common emitter (inverting) amplifier

4 0 8 1

 \blacktriangleleft **D** ∍

AC-coupled common emitter (inverting) amplifier

- chose gain $G = R_c/R_e$
- maximum output swing

$$
\bullet \ \ V_c = V_{cc}/2
$$

• quiescent current $I_c = (V_{cc} - V_c)/R_c = V_{cc}/2R_c$

$$
\bullet \ \ R_c = V_{cc}/(2I_c)
$$

$$
\bullet \ \ R_e = R_c / G
$$

• we want $I_{R_1+R_2} \gg I_b$

• factor of 10 for a safe margin

$$
I_{R_1+R_2}=10I_b=10I_c/\beta
$$

 $R_1 + R_2 = V_{cc} \beta / (10 l_c)$

$$
\bullet\ \ V_b=V_e+0.6
$$

 $P_2/(R_1 + R_2) = V_b/V_{cc}$

