Operational amplifiers (continued). Useful circuits with Op-Amp.

Eugeniy E. Mikhailov

The College of William \& Mary

Week 10

Integrator

$$
V_{\text {out }}(t)=V_{C}(t)=\frac{Q(t)}{C}=\int \frac{I(t)}{C} d t=\int \frac{V_{\text {in }}(t)-V_{c}(t)}{R C} d t
$$

for $V_{c} \approx 0$

$$
V_{\text {out }}(t) \approx \frac{1}{R C} \int V_{\text {in }}(t) d t
$$

Integral representation in Fourier space

$$
\begin{aligned}
F(t) & =\int_{-\infty}^{t} f\left(t^{\prime}\right) d t^{\prime}=\int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{+\infty} f(\omega) e^{i \omega t^{\prime}} d \omega \\
& =\int_{-\infty}^{+\infty} d \omega \int_{-\infty}^{t} f(\omega) e^{i \omega t^{\prime}} d t^{\prime} \\
& =\int_{-\infty}^{+\infty} d \omega\left[\left.\frac{f(\omega)}{i \omega} e^{i \omega t^{\prime}}\right|_{-\infty} ^{t}\right] \\
& =\int_{-\infty}^{+\infty} d \omega \frac{f(\omega)}{i \omega} e^{i \omega t}=\int_{-\infty}^{+\infty} d \omega F(\omega) e^{i \omega t}
\end{aligned}
$$

$$
\begin{aligned}
F(t) & =\int_{-\infty}^{t} f\left(t^{\prime}\right) d t^{\prime} \\
F(\omega) & =\frac{f(\omega)}{i \omega}
\end{aligned}
$$

Integrator

$$
V_{\text {out }}(\omega)=G(\omega) V_{\text {in }}(\omega)=\frac{Z_{c}}{R+Z_{c}} V_{\text {in }}(\omega)=\frac{1}{1+i \omega R C} V_{\text {in }}(\omega)
$$

for $\omega \gg \omega_{3 d B}$

$$
V_{\text {out }}(\omega) \approx \frac{1}{R C} \frac{V_{\text {in }}(\omega)}{i \omega}
$$

True Integrator / low-pass filter

We need to keep

$$
I=\frac{V_{i n}}{R}
$$

$$
G(\omega)=-\frac{Z_{C}}{R_{1}}=-\frac{1}{i \omega R_{1} C}
$$

The only one problem remains: if any DC voltage is applied at input, output will reach a rail at power supply voltage.
This can be though as a lack of feedback since at DC capacitor blocks everything.

Low-pass filter / Integrator improved

$$
G(\omega)=-\frac{Z_{c} \| R_{2}}{R_{1}}=-\frac{R_{2}}{R_{1}} \frac{1}{1+i \omega R_{2} C}
$$

The only one problem remains: if any DC voltage is applied at input, output will reach a rail at power supply voltage.

Differentiator / high-pass filter

$$
\begin{aligned}
V_{\text {in }} & =\frac{Q}{C}=\frac{1}{C} \int I d t \rightarrow I=C \frac{d V_{i n}}{d t} \\
V_{\text {out }} & =-I R_{2}
\end{aligned}
$$

$$
V_{o u t}=-R_{2} C \frac{d V_{i n}}{d t}
$$

Fourier space

$$
V_{\text {out }}(\omega)=-\frac{Z_{R_{2}}}{Z_{c}}=-i \omega R_{2} C V_{\text {in }}(\omega)=\omega R_{2} C V_{\text {in }}(\omega) e^{-i \frac{\pi}{2}}
$$

Differentiator compensated

$$
V_{\text {out }}(\omega)=-\frac{Z_{R_{2}} \| Z_{f}}{Z_{c}} V_{\text {in }}(\omega)=-\frac{i \omega R_{2} C}{1+i \omega R_{2} C_{f}} V_{\text {in }}(\omega)
$$

$$
\begin{aligned}
& \omega \ll \frac{1}{R_{2} C_{f}} \\
& \quad V_{\text {out }}(\omega)=-i \omega R_{2} C V_{\text {in }}(\omega)
\end{aligned}
$$

$$
\begin{aligned}
& \omega \gg \frac{1}{R_{2} C_{f}} \\
& V_{\text {out }}(\omega)=-\frac{C}{C_{f}} V_{\text {in }}(\omega)
\end{aligned}
$$

Thermistor linearization

$$
R_{t h}(T)=R_{0} e^{-\gamma\left(T-T_{0}\right)}
$$

Where $\gamma=0.04, T_{0}=20^{\circ} \mathrm{C}, R_{0}=10 \mathrm{kOhm}$. Below circuit linearizes the output voltage vs temperature ($R=R_{0}$ as an example).

