# Operational amplifiers (continued). Useful circuits with Op-Amp.

Eugeniy E. Mikhailov

The College of William & Mary



Week 10

# Integrator



$$V_{out}(t) = V_c(t) = rac{Q(t)}{C} = \int rac{I(t)}{C} dt = \int rac{V_{in}(t) - V_c(t)}{RC} dt$$

for  $V_c \approx 0$ 

$$V_{out}(t) pprox rac{1}{RC} \int V_{in}(t) dt$$



### Integral representation in Fourier space

$$F(t) = \int_{-\infty}^{t} f(t')dt' = \int_{-\infty}^{t} dt' \int_{-\infty}^{+\infty} f(\omega)e^{i\omega t'}d\omega$$

$$= \int_{-\infty}^{+\infty} d\omega \int_{-\infty}^{t} f(\omega)e^{i\omega t'}dt'$$

$$= \int_{-\infty}^{+\infty} d\omega \left[ \frac{f(\omega)}{i\omega}e^{i\omega t'} \Big|_{-\infty}^{t} \right]$$

$$= \int_{-\infty}^{+\infty} d\omega \frac{f(\omega)}{i\omega}e^{i\omega t} = \int_{-\infty}^{+\infty} d\omega F(\omega)e^{i\omega t}$$

$$F(t) = \int_{-\infty}^{t} f(t')dt'$$

$$F(\omega) = \frac{f(\omega)}{i\omega}$$

# Integrator



$$V_{out}(\omega) = G(\omega)V_{in}(\omega) = \frac{Z_c}{R + Z_c}V_{in}(\omega) = \frac{1}{1 + i\omega RC}V_{in}(\omega)$$

for  $\omega\gg\omega_{3dB}$ 

$$V_{out}(\omega) pprox rac{1}{RC} rac{V_{in}(\omega)}{i\omega}$$



# True Integrator / low-pass filter

We need to keep

$$I = \frac{V_{in}}{R}$$



$$G(\omega) = -\frac{Z_c}{R_1} = -\frac{1}{i\omega R_1 C}$$

The only one problem remains: if any DC voltage is applied at input, output will reach a rail at power supply voltage.

This can be though as a lack of feedback since at DC capacitor blocks everything.

## Low-pass filter / Integrator improved



$$G(\omega) = -\frac{Z_c || R_2}{R_1} = -\frac{R_2}{R_1} \frac{1}{1 + i\omega R_2 C}$$

The only one problem remains: if any DC voltage is applied at input, output will reach a rail at power supply voltage.

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 ・ り Q (C)

# Differentiator / high-pass filter



$$V_{in} = rac{Q}{C} = rac{1}{C} \int Idt 
ightarrow I = C rac{dV_{in}}{dt}$$
  $V_{out} = -IR_2$ 

$$V_{out} = -R_2 C \frac{dV_{in}}{dt}$$

#### Fourier space

$$V_{out}(\omega) = -\frac{Z_{R_2}}{Z_c} = -i\omega R_2 C V_{in}(\omega) = \omega R_2 C V_{in}(\omega) e^{-i\frac{\pi}{2}}$$

# Differentiator compensated



$$V_{out}(\omega) = -\frac{Z_{R_2} \| Z_f}{Z_C} V_{in}(\omega) = -\frac{i\omega R_2 C}{1 + i\omega R_2 C_f} V_{in}(\omega)$$

$$\omega \ll rac{1}{R_2 C_f}$$
  $V_{out}(\omega) = -i\omega R_2 C V_{in}(\omega)$ 



#### Thermistor linearization

$$R_{th}(T) = R_0 e^{-\gamma(T-T_0)}$$

Where  $\gamma = 0.04$ ,  $T_0 = 20$  °C,  $R_0 = 10$  kOhm. Below circuit linearizes the output voltage vs temperature ( $R = R_0$  as an example).



