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Chapter 3: Capacitors, Inductors, and Complex
Impedance

In this chapter we introduce the concept of complesistance, or impedance, by
studying two reactive circuit elements, the cameicégnd the inductor. We will study
capacitors and inductors using differential equettiand Fourier analysis and from these
derive their impedance. Capacitors and inductagsuaed primarily in circuits involving
time-dependent voltages and currents, such as A&Gits.

I. AC Voltages and circuits

Most electronic circuits involve time-dependenttages and currents. An important
class of time-dependent signal is the sinusoidithge (or current), also known as an AC
signal (Alternating CurrentKirchhoff’'s laws and Ohm’s law still apply (they always
apply), but one must be careful to differentiate beveen time-averaged and
instantaneous quantities.

An AC voltage (or signal) is of the form:
V(t) =V, cos(wt) (3.2)

where w is the angular frequency, is the amplitude of the waveform or tipeak
voltage andt is the time. The angular frequency is relatechfteguencyff by w =2xf
and the periodT) is related to the frequency By 1/f. Other useful voltages are also
commonly defined. They include thaeak-to-peak voltage (Vyp) which is twice the

amplitude and thdRMS voltage (Vrus) Which is Vg,s :Vp/\/i. Average power in a
resistive AC device is computed using RMS quarstitie
P=IrmsVrvs = 1pVp/2. (3.2)

This is important enough that voltmeters and ammate AC mode actually return the
RMS values for current and voltage.

While most real world signals are not sinusoiddl, gignals are still used extensively
to characterize circuits through the techniqueairter analysis.

Fourier Analysis

One convenient way to characterize the rate of ghadf a function is to write the
true function as a linear combination of a set wictions that have particularly easy
characteristics to deal with analytically. In tltigse we can consider the trigonometric
functions. It turns out that we can write any fuoctas an integral of the form

V(t) = j V codat + g)dw (3.3)

whereV and ¢ are functions of the frequeney This process is calldéburier analyss,
and it means that any function can be written asindegral of simple sinusoidal
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functions. In the case of a periodic waveform thiggral becomes a sum over all the
harmonics of the period (i.e. all the integer nuliciative frequencies of the period).

V(t)=> A codnot +¢,) (3.4)

An implication of this mathematical fact is thiaitwe can figure out what happens
when we put pure sinusoidal voltages into a lineacircuit, then we will know
everything about its operation even for arbitrary input voltages.

Complex Notation

In complex notation we replace our sinusoidal fiomg by exponentials to make the
calculus and bookkeeping easier still. Then we icalude both phase and magnitude
information. We'll define

€Y =cosp+ising, (3.5)

wherei’® = -1.
The general procedure for using this notation is:

1. Change your problem into complex algebra (i.e.aeptosat with ')
2. Solve the problem.
3. Take the real part of the solution as your answéreaend.

[I. Capacitors

One of the most basic rules of electronics is ttiatuits must be complete for
currents to flow. This week, we will introduce atception to that rule.

The capacitor is actually a small break in a citclily measuring the resistance of a
capacitor, you will find that it is an open circulowever, at the inside ends of the
capacitor’s lead, it has little plates that actharge reservoirs where it can store charge.
For short times, you do not notice that the breathére. Negative charge initially flows
in to one side and out from out the other side gssif the two leads were connected. For
fast signals, the capacitor “looks” like a shortait. But after a while the capacitor’s
reservoirs fill, the current stops, and we notica there really is a break in the circuit.

For slow signals, a capacitor “looks” like an opsrcuit. What is fast, and what is
slow? It depends on the capacitor and the reshefcircuit. This week, you will learn
how to determine fast and slow for yourselves.

Capacitors serve three major roles in electricedudis (although all three are just
variations of one basic idea):

» Charge integrators;
» High or low frequency filters;
» DC isolators.
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In order to perform these functions analyticallye will need to introduce a number of
new concepts and some significant mathematicaldbsm. In this process we will also
develop a number of new concepts in analyzing et circuits.

Capacitance

A capacitor is a device for storing charge and
electrical energy. It consists of two parallel
conducting plates and some non-conducting
material between the plates, as shown in figure 3.1
on the right. When voltage is applied positive
charge collects on one plate and negative charge + + + + + + + +
collects on the other plane. Since they are a#dact e e oo oo
to each other this is a stable state until theagaltis
changed again.

A capacitor's charge capacity @apacitance
(C) is defined as:

Q=CV (3.6)

which relates the charge stored in the capaci@r (

to the voIt_age across its Iead\sé).(_Capamtance is Figure 3.1: A capacitor consist of

measured in Farads (F). A Farad is a very large uni .

and most applications F nE. or bF sized two parallel plates which store equal
. pplicat user, ’ pr Siz awd opposite amounts of charge

devices. Many electronics components have sma

parasitic capacitances due to their leads and mlesig

The capacitor also stores energy in the electeld fgenerated by the charges on its
two plates. The potential energy stored in a capgavith voltage V on it, is

1.,
=—CV 3.7
2 S

We usually speak in terms of current when we amabyzircuit. By noting that the
current is the rate of change of charge, we caniteewhe definition of capacitance in
terms of the current as:

11
v==2g=1(a 3.8
cQ=2l (38)
or
1=c v (3.9)
dt

This shows that we can integrate a functi¢ just by monitoring the voltage as the
current charges up a capacitor, or we can diffeatna functiorivV(t) by putting it across
a capacitor, and monitoring the current flow whiea voltage changes.
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A Simple RC Circuit

We will start by looking in detail at the simplest Vin
capacitive circuit, which is shown in figure 3.2 dre

right. An RC circuit is made by simply putting a resistor R
and a capacitor together as a voltage divider. \leput
the resistor in first, so we can connect the capado —— Vour
ground. - c
By applying Kirchhoff's Laws to this circuit, we gasee |
that:
1. The same current flows through both the resistor _
and the capacitor, and F_|gur_e 3.2_: A_S|mple RC
2. The sum of the voltage drops across the th§rCU|t which integrates
: urrent.
elements equal the input voltage.
This can be put into a formula in the following agjan:
1
V,, _|R+Ej|dt. (3.10)
which can also be written as
V
N = L ldt . (3.11)
R RC
We can also put this into the form of a differenéiquation in the following way:
\Y
DV = Rd—I +|— (3.12a)
dt d C
or
CV,, =RCl +1. (3.12b)

These equations show that times are measured ta ahRC, and that what you see
depends on how quickly things change during RGdime interval.

If the current changes quickly, then most of thdtage will show up across the
resistor, while the voltage across the capacitowlsi charges up as it integrates the
current. If the voltage changes slowly, then mdsthe voltage shows up across the
capacitor as it charges. Since this usually requaremall current, the voltage across the
resistor stays small.

But, what happens at intermediate times? To deterrthis quantitatively we will
have to develop some more sophisticated matherhtaaiques.

Solutions to RC Circuit

Rather than produce the general solution, we valicentrate on two special cases
that are particularly useful. The first will be farconstant voltage and the second will be
a sinusoidal input.

-20 -



Chapter 3: Capacitors, Inductors, and Complex Iraped

To study a constant supply voltage on an RC cireut set the left side of equation
3.12 equal to a constant voltage. Then we havemplsi homogeneous differential
equation with the simple solution for the currehi@ecaying exponential,

| =1 e, (3.13)

which will account for any initial conditions. Afta time of a few RC time periods, this
solution will have decayed away to the supply \g#ta

And now let us consider the other solution. In phier section, we argued that if we
can understand thBC circuit's behavior for sinusoidal input we can death any
arbitrary input. Therefore, this is the importanteo

Let’s look at our simpl&RC circuit and suppose that we apply (or drive) apsnsine
wave into the input:

V,, =V, codwt). (3.14)
In complex notation, this means that we will set dnive voltage to
V,y =V, exiat), (3.15)

and we just have to remember to take the Realgpéne end of our calculation.

If we put this drive voltage into the differentiajuation (equation 3.12), then it
becomes a relatively simple inhomogeneous diffeakatuation:

cd:j/% = CV,iwexp{at) = RC% +1. (3.16)

This is relatively simple because it shows up gerofn physics that you might as well
memorize the solution or at least the way to getdhlution. Note that mathematically it
looks just like a driven harmonic oscillator.

We can obtain the solution by using the standawpee for first order linear
differential equations. We start by rewriting eqoatas

d 1, iav,

dt RC
which we then multiply b}exdt/ RC) to obtain
N expt/RC) | = IV,
RC R

The left hand-side of this equality can be rewnittender the form of a total derivative
(multiplication rule) so that we now have

i,
R

expfat), (3.17)

expt/ RC)% expliw+ R—lc)t] . (3.18)

d t ] 1
a[l (t)exp%)} = exp[@w+E)t]. (3.19)

This equation is easily integrable and can be téxwrias

YA 1
- j exp[aw+R—C)t]dt . (3.20)

10 epréC) =
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The integral is straightforward and yields theduling expression:
iV, 1
R % +tiw

The first term represent the “steady state” odaitiabehavior of the driven circuit, while
the second term describes the transient behavidheofcurrent after switching on the
driving voltage. Since we are only interested ia litng-term behavior of the circuit, we
neglect the second term and concentrate on the After a little bit of algebra, we can
rewrite the steady-state current as

iV, 1. explat) = w/,C aRC +1i
R Yctiw J1+(@RC)? 1+ (awRC)?

I(t) =

exp{at) +Cst Edaxp(—%c) (3.21)

I(t) = explat) (3.22)

The second fraction can be interpreted as a please with tangoz%, so that the
7

expression for the current becomes
[(t) =1,explat + @) (3.23)
with

NC Vo cos@) (3.24)

|, =N
° Ji+(@rC)? R

The real solution of this simple RC circuit can dgained by taking the real part of
equation 23, and is left as an exercise to thearead

The solution of the simple RC circuit appears tadtber complicated and involved,
however it simplifies considerably when we plug &ipn 23 back in to the original
integral equation from Kirchhoff's loop law (equati 10). After integrating the
exponential and a little bit of algebra, we obtain

V() = | Q)R +] (t)é (3.25)

This remarkably simple expression looks a lot litke standard Kirchhoff's loop law for
resistors, except that the capacitor term behawdsarnrequency dependent “imaginary”
resistance.

RC Impedance

We will obtain the same solution as the one we inbthfor the original voltage
divider, as long as we assign an imaginary, frequedependent, resistance to the
capacitor. The “imaginary” part just means thatilt produce az/2 phase shift between
the voltage and the current for a sinusoidal inye. will call this impedance

e (3.26)
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Now, the solution for aiRC divider becomes somewhat simplified. We can complo
total current flowing through the circuit as
i at : i at : i at
| = Vin Vm — VOe_ - IC(L:-Voe :ﬁ IQRCOe :ﬁcos@)ei(mﬂﬂ) (327)
Z, R+Z. R+1/(iaC) 1+icRC R (1+iaRC) R

The voltage across an element is just this cuthers the element’s impedance. For the
voltage drop across the resistor it is largelysémne as before:

V. = IR=V, cos@)e'“*?. (3.28)
For the capacitor, we get the following voltagepdro
i (at+@)
_ L V% cqs(qa)e -V, sin(g)e'“*?)
:V C;;@) i(at+o-1112) Vo Sin(ga)ei(aﬁgo—ﬂ/Z)

If everything is correctly calculated then the sofmthe voltage drops across the two
elements should be equal to the input voltage sliey’ it:

V. +V, =V, (cos@) —isin@)e“*? =v, e e« =y g« (3.30)

Ve =1Z, =1

Remember, you get the actual waveforms by takiregg rdal parts of these complex
solutions. Therefore

Vr=Vpcospcoqwt+ ¢ and (3.31)

Ve = Vosingcoqwt+ ¢ 7712)= -V singsin(wt+ ¢ (3.32)
This looks complicated, but the limits of high fusmcy and low frequency are easy to
remember. At high frequencieg - 0), the capacitor is like a short, and all the vgdta
shows up across the resistor. At low frequencges.(71/2), the capacitor is like an open
circuit, and all the voltage shows up across thgacior.

If you consider the leading terms for the elemewts the small voltages, you find
that

(1-iwRC) i (vo ]
c=Voo————S5 - ——| =< |asw > »
1+(wRC) w\ RC
wRC(i+wRC)
V, =V, — - iw(RCV,)asw - G
1+(wRC)

(3.33)

Thus, at high frequency, the voltage across theaaty is the integral of the input
voltage, while at low frequency the voltage acrtiss resistor is the derivative of the
input voltage.

This says that as long as all the important freqiesnare high, the capacitor will
integrate the input voltage. If all the importaneduencies are small, the resistor will
differentiate the voltage. If there are intermeglixequencies, or a mixture of some high
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and some low frequencies, the result will not beisgple but it can be determined from
the voltage divider algebra using complex notation.

We finish by noting that the voltage on the capaag always1v2 out of phase with
the voltage on the resistor.

I1l. Inductors

An inductors is a coil of wire, or solenoid, whican be
used to store energy in the magnetic field thaenerates
(see figure 3.3 on the right). It is mathematicaliyilar to
a capacitor, but has exactly the opposite behaviior:
behaves as a short circuit for low frequencies asdan
open circuit for high frequencies (i.e. it passesv |
frequency signals and blocks high frequency signals

The energy stored in the field of an inductor with
inductance L is given by the following formula:

1.2
==Ll 3.34
> (3.34)

The Sl unit of inductance is the Henry (H).

Commercially available inductors have inductandeat t Figyre 3.2 An inductor
range from nH to mH. Small millimeter-size and a®®ter onsists of a coiled wire,
size solenoids typically have inductances in thegeaof 350 called a solenoid.
HH, while magnetic field coils can have a inductan@® The dashed arrow “B”,
the mH range, and can sometimes have inductancep ofrepresent the magnetic
to several H. Most electronics components have Ismgkid generated by the
parasitic inductances due to their leads and def®n cyrrent in the inductor.
example, wire-wound power resistors).

In an electric circuit, a voltage, or electromotipetential, is generated across the
terminals of the inductor when the current chandies to Faraday’'s law. The voltage
drop is given by the following simple expression:

I
V= Ld— (3.35)
dt
From this equation, we see that the inductor opsrakactly opposite to a capacitor: an
inductor differentiates the current and integraitesvoltage.

The LR circuit

We can analyze the LR circuit in much the same thaywe derived the operation of
the RC circuit. We start by applying Kirchhoff'sdp law to the LR circuit in figure 3.4
below, and we find that
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V,, = IR+ Ldt (3.36) Vin
dt
If we apply a constant voltage the solution can be R
calculated using the techniques developed for tBe R
circuit and we calculate that Vour
I(t) = I{l—exp(—%tj . (3.37) L

The circuit approaches the steady state cutgevin/R

with a time constant df/R.
Figure 3.4: A simple LR
circuit.

LR impedance

Instead of solving the differential equation foe thR circuit with a sinusoidal applied
input voltage such as that given by equations 1&n as we did with the RC circuit, we
will just assume that the current has the form

[(t) =1,explat + @) (3.38)

We plug this ansatz solution back into the difféi@requation of equation 31 and find
that

V,, = ()R+iall , (3.39)

from which we deduce that the inductor behaves @esiator with frequency dependent
“imaginary” resistance. The impedance of an indutdherefore

Z, =ial (3.40)

Just as with the RC circuit, we can apply Ohm’s tawhe circuit to calculate the total
current. Since R and L are in series, we obtain

1-iw—

iat iat
(1) = V,, _ Ve _ V,e V,

= _ 2R« =ﬁcos€0)e““"“’) (3.41)
Z.,., R+Z, R+ial R ( Lj R
1+ w—

where the phase is given kgn(g) =w%. We calculate the voltage drop across the
resistor using the expression for the current amdithat
V, =1 (t)R =V, cos@)e'“ ™ (3.42)

The voltage drop across the inductor is calcul#tedsame way, and we find

V, =iadl(t) = mLEOcos@)e""“"” =iV, sin(@e'“? =V, cosg)e“ "2 (3.43)
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If everything is correctly calculated then the sofmthe voltage drops across the two
elements should be equal to the input voltage sltey’ it:

V. +V, =V, (cos@) +isin(@)e'“? =V e%“? =y g (3.44)

You get the actual waveforms by taking the realtgpaf these complex solutions.
Therefore

Vr=Vycospcoqwt-¢ and (3.45)
V= Vpsingcoqwt- gt 712)= Vp singsin(wt- ¢ (3.46)

This looks complicated, but the limits of high fuemcy and low frequency are easy to
remember. At high frequencieg & 77/2), the inductor is like an open circuit, and all
the voltage shows up across the inductor. At losgdiencies ¢ — 0), the inductor is
like a short circuit or just a plain wire, and tlé voltage shows up across the resistor.

It should also be pointed out that the voltage o inductor is alwaysTw2 out of
phase with the voltage on the resistor.

V. Transformers

Transformers are an ingenious combination of twduators. They are used to
transfer power between two circuits by magneticpiog. The transformer changes an
input voltage, without affecting the signal shapenilar to the voltage divider of last
week. However it has several important differences:

a) It can increase as well as decrease a signal’s

amplitude (i.e. AC voltage).

. . . . Vin Vour
b) It requires a time-varying (AC) input to work.

c) Itis much harder to fabricate.

d) It usually does not work well for very fast
signals (since inductors block high frequencies).

Transformers are commonly used as a majdrigure 3.5 The schematic
component in a DC power supplies since they casymbol for a transformer.
convert a 120 V AC wall voltage into a smaller agk
that is closer to the desired DC voltage (e.g. 6r¥15 V). The schematic symbol for a
transformer is shown in figure 3.5, above.

Transformers are passive devices that simultanga@hsinge the voltage and current
of a circuit. They have (at least) four termindigso inputs (called the primary) and two
outputs (called the secondary). There is no rd&rdnce between the input and output
for a transformer, you could simply flip it arouadd use the secondary as the input and
the primary as the output. However, for the sakelafity, we will always assume that
you use the primary for input and the secondarytdput.
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The coupling between the input and output is doregmatically. This allows
transformers to have a number of interesting benefcluding:

e) There is no DC connection between input and outpmutiransformers are often
used to isolate one circuit from another.

f) Transformers only work for time varying signals, emhthe inductive coupling
between the coils is greater than the resistiveels

Since they have no external power the output pawer not be greater than the input
power

P=Vil,2V{ .. (3.47)

Usually, we will assume equality but there are $megistances (and hence resistive
losses) in the coils and a poorly or cheaply designansformer many not have the input
and output sufficiently strongly coupled to eachest Depending on the device and the
signal the output power may well be less than tipeii power.

Transformers are most commonly used to changevbitage (120 V RMS at 60 Hz)
into a more convenient voltage. High power transiois lines use transformers to
increase the voltage and decrease the current. rétisces|’R power losses in the
transmission wires. For our circuits we will useansformer that reduces the voltage and
increases the current.

Transformers are characterized by the ratio ofriln@ber of turns on the input and
output windings. The magnetic coupling in an idganhsformer will insure that the
number of turns times the current flowing is theedor the input and output:

Ny, =NJ (=1 =Ne (3.48)
I, Ng
Since the voltage must change in the opposite maonkeep the input and output

power, the ratio of the voltages is the same asati@ of the turns:

Vs - Ns

Vo N,
Transformers are usually called step-up or steprdaacording to whether the output
voltage increases or decreases.

(3.49)

A transformer also transforms the impedance of@iitj since it changes the ratio of
V/I. Using our rules above, the ratio of output edance to input impedance is the
square of the ratio of turns:

é:ﬁh:('\‘_sj (3.50)

So, if you use a transformer as a step-up trangiQrit increases the voltage and the
impedance at its output relative to its input. tfuyuse a transformer as a step-down
transformer, it decreases the voltage and the ianpmlat its output.
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Design Exercises

Design Exercise 3-1: Using Kirchhoff's laws, derive a formula for thetal capacitance
of two capacitors in parallel and a formula for tb&al capacitance of two capacitors in
series. (Hint: pretend that you are working withA® signal of frequency).

Design Exercise 3-2:  Using Kirchhoff's laws, derive a formula for thetal inductance
of two inductors in parallel and a formula for tteeal inductance of two inductors in
series. (Hint: pretend that you are working withAd signal of frequency).

Design Exercise 3-3: Calculate V. as a function of { in the Vi
RLC circuit of figure 3.6 on the right, using therfulas for £,

Zc, and 4 (do not use Maple / Mathematica / MATLAB / R
MathCad for these calculations and show all stégg)is a perfect

AC voltage signal with a frequency af {

Plot the magnitude and phase aof,\as a function otvfor R = 1 — O
kQ, C = 1pF, and L = 1QuH. What happens to the magnitude and

the phase of }at w=1/+/LC ?

(Maple / Mathematica / MATLAB / MathCad are perradtfor the L
plots.)

Figure 3.€: An RLC

filter circuit.
Design Exercise 3-4: Calculate V as a function of ¥ in Vin
the RLC circuit depicted on the right, using thenfalas for
ZR, Zc, and Z (do not use Maple / Mathematica / MATLAB R
/ MathCad for these calculations and show all 3teégs is a
perfect AC voltage signal with a frequencycaf Vour

Plot the magnitude and phase qf\as a function otvfor R
=1kQ, C=1pF, and L = 10uH. What happens to the C

magnitude and the phase af\at a):]/\/ LC? —

(Maple / Mathematica / MATLAB / MathCad are perradt
for the plots.)

Figure 3.7. Another
RLC filter circuit.
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Lab 3: AC signals, Complex Impedance, and Phase

Section 1: Introduction to transformers
In this section, we use a transformer to changéntpedance of an AC signal.

a. Measure the input impedance of a speaker. Measweutput impedance of a
signal generator with a 0.5V amplitude sinusoidpatibf 1 kHz. Remember you are
using AC signals. How do you measure current wittoscilloscope? What does an
AC current reading from a DVM mean in terms of weveform? Check this with the
oscilloscopelf measurements do not match call instructor for dscussion before
you proceed any further

b. Measure the signal generator output without anyd.loBhen connect the signal
generator to a speaker and measure the signaltadeliThe voltage drops so much
because of the impedance mismatch. Measure ther patwehe speaker.

c. Use a transformer to decrease the output voltabée wicreasing the output current
into the speaker. Measurgand |, of the signal generator, and j,Vand }, for the
speaker. How well does the transformer transmit @g@wDoes Wu/Vin = lin/lout ?
Estimate the ratio of primary turns to secondargg@

d. Measure th@utput impedanceof the signal generator plus transformer cirddides
the measured value agree with what you expect ¢tieally? What should be the
ratio of the transformer for the ideal impedancedamag of the signal generator to
the speaker?

Section 2: The RC circuit
In this section, we take a first look at the cla$3C circuit and the concept of phase.

e. Get two capacitors and measure their individualacapnces. Measure the total
capacitance with a capacitance meter when theyinare
series, and when they are in parallel. Do you @etdg v/,
agreement with what you expect?

f. Construct the RC circuit to the right, with compohe
ranges R=1-10® and C=0.001-0.0uF. Set the function
generator at approximatedy=0.1/RC with a square wave —e
and describe what you see. Measure the time canstan :E\
the exponential and use it to determine the cagramit of
C (R should be determined with a multimeter).

Vout

Figure 3.& An RC filter
g. (Same set-up) Set the function generator to sidasoi cir%:uit.

output at w=1/RC and measure the magnitude @fand
Vo DO you get what you expect ? Measure the phase of
Vout With respect to ¥ and make a Lissajou plot ot yYand \,.
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