Integrator and differentiator
It th

$$
\begin{aligned}
& \frac{1 C}{T} \quad Q(t)=\int_{-\infty}^{t} I\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\text {in }} \frac{V_{\text {in }}-V_{c}}{R} \approx \frac{V_{\text {in }}}{R} \text {, if } \underline{\underline{V_{c} \approx 0}} \\
& V_{\text {out }}=V_{c}=\int \frac{I d t}{c} \approx \int \frac{V_{\text {in }}(t)}{R \cdot c} d t \\
& \operatorname{Vout}(t) \sim \int_{-\infty}^{t} V_{\text {in }}\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
f(t) & =\int_{-\infty}^{\infty}\left[f_{\omega}\right] \cdot e^{i \omega t} d \omega \\
F(t) & \left.=\int_{-\infty}^{t} f\left(t^{\prime}\right) d t^{\prime}=\int_{-\infty}^{t} \int_{-\infty}^{\infty} f_{\omega} e^{i \omega t^{\prime}} d \omega\right] d t^{\prime}=\int_{-\infty}^{\infty} d \omega_{f_{0}} \int^{t} e^{i \omega t^{\prime}} d t^{\prime} \\
& =\left.\int_{-\infty}^{\infty} d \omega f_{v} \frac{e^{i \omega t^{\prime}}}{i \omega}\right|_{-\infty} ^{t}=\frac{\int_{-\infty}^{\infty} \frac{f \omega}{i \omega} e^{i \omega t} d \omega}{\left(-\frac{f \omega}{i \omega}\right.} \quad \\
& F(t)=\int_{-\infty}^{\infty} F_{\omega} e^{i \omega t} d \omega
\end{aligned}
$$

$$
\overbrace{V_{\text {in }} \vec{I}}^{R} \frac{V_{c}}{I_{D} c} V_{\text {out }}
$$

$$
\begin{aligned}
V_{\text {out } \omega} & =\frac{1}{R+1 / i \omega e} \cdot \frac{1}{i \omega e} \cdot V_{\text {in }} \\
& =\frac{1}{1+e_{i \omega c}} V_{\text {in } \omega}
\end{aligned}
$$

$$
\begin{aligned}
& \text { differentiator } \\
& V_{\text {out }} \sim \frac{d V_{\text {in }}(t)}{d t} \\
& \begin{aligned}
\left.F_{m}\right)=\frac{d}{d t} f(t) & =\frac{d}{d t} \int^{\infty}(f \omega) e^{i \omega t} d \omega=\int_{-\infty}^{\infty} f \omega\left(\frac{d}{d t} e^{i \omega t}\right) d \omega \\
& =\int_{-\infty}^{\infty} f_{-\infty} f \omega i \omega e^{i \omega t} d \omega
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
G & =-\frac{z_{f}}{z_{\text {in }}}=-\frac{R_{f}}{1 / i \omega c}= \\
& =-\frac{R_{f} C \cdot i \omega}{V_{\text {in }}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{e}-? \\
& \underbrace{G B W}_{0}=\text { ons } A \\
& R_{f} C \cdot f_{c}=\text { cons } P \\
& f_{c}=\frac{G B W}{R_{P} C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { linear } \\
& \text { scrale }
\end{aligned}
$$

