AC signals and filters.

Eugeniy E. Mikhailov

WILLIAM ©゚ MARY

CHARTERED 1693

Power dissipation

Recall that power dissipated by element is

$$
P=V I
$$

where V and I are real.
Since we use a substitute

$$
V \cos (\omega t) \rightarrow V e^{i \omega t} \text { and } I \cos (\omega t) \rightarrow I e^{i \omega t}
$$

we need to write

$$
P=\operatorname{Re}(V) \operatorname{Re}(I)
$$

Recall the Ohm's law

$$
V=Z I
$$

Power dissipation by a reactive element

Theorem

Average power dissipated by a reactive element (C or L) is 0 Lets use as example an inductor.

$$
\begin{gathered}
Z_{L}=(0) L=e^{i \frac{\pi}{2}} L L, I_{L}=I_{p} e^{i \omega t} \\
\left.V_{L}=Z_{L} I_{L}=e^{i \frac{\pi}{2}} \omega L I_{L}=\omega L I_{p} e^{i(\omega t+\cdot}\right) \\
\operatorname{Re}\left(I_{L}\right)=I_{p} \cos (\omega t), \operatorname{Re}\left(V_{L}\right)=-\omega I_{p} L \sin (\omega t)
\end{gathered}
$$

Thus average power dissipated by the inductor

Fourier transform

If function $f(t)$ goes to zero at $\pm \infty$ then $\hat{f}(\omega)$ exists such as

$$
\underline{f(t)}=\int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega t} d \omega
$$

Transfer function

Time domain

$V_{\text {out }}(t)=\int_{-\infty}^{t} H(t-\tau) V_{\text {in }}(\tau) d \tau$

$$
V_{\text {out }}(\omega)=G(\omega) V_{\text {in }}(\omega)
$$

Where G is complex transfer function or gain.

Definition

$$
G(\omega)=\frac{V_{\text {out }}(\omega)}{V_{\text {in }}(\omega)}=|G(\omega)| e^{i \phi(\omega)}
$$

Often used values of G in dB

$$
d B=20 \log _{10}(|G(\omega)|)
$$

Simple example: RC low-pass filter

$$
\begin{aligned}
& z_{C}=\frac{1}{i \omega} L \\
& \omega \rightarrow 0 \\
& z_{e} \rightarrow \infty^{\prime} \\
& v_{\text {out }}=v_{\text {in }}^{\int_{0}^{z(z+z c}}{ }_{2}^{z+1} v_{\text {in }} \Rightarrow G=1 \\
& \omega \rightarrow \infty, z_{c}=\frac{1}{i \omega c} \rightarrow 0 \\
& \text { Zer }_{z_{c=0}} v_{0 u t}=0, G(\omega \rightarrow \infty)=0
\end{aligned}
$$

$$
\begin{aligned}
& G=\frac{1}{1+i \frac{\omega}{\omega_{3 d B}}} \cdot \frac{1-i \omega / \omega_{3 d \xi}}{1-i \omega / \omega_{3 d \xi}}= \\
& =\frac{1-i \omega / \omega_{3 d B}}{1-(i)^{2} \frac{\omega^{2}}{\omega_{3 d B^{2}}}}=\frac{1-\frac{i(\omega}{\omega 3 d B}}{1+\frac{\omega^{2}}{\omega_{3 d B}^{2}}}{ }^{4} \\
& -1 \\
& c=x+i y=A \cdot e_{i}^{i \varphi} \\
& A=\sqrt{x^{2}+y^{2}} \quad \tan \varphi=\frac{y}{x} \\
& \text { Re }
\end{aligned}
$$

RC low-pass filter at $\omega=.1 / R C$

Signal vs time

vout

$$
V_{c}=z_{c} \cdot I_{e}
$$ Lissajous figure $\frac{i}{\tau} \frac{1}{1 \omega C}=\frac{-i}{\omega C}$

RC low-pass filter at $\omega=1 / R C$

Signal vs time $\sqrt{2} \sqrt{2}$

Lissajous figure

RC low-pass filter at $\omega=10 / R C$

Signal vs time

Lissajous figure

Bode plots

Definition

Bode plot: plots of magnitude and phase of the transfer function, where $|G|$ is often plotted in dB

RC high-pass filter

$$
G(\omega)=\frac{V_{\text {out }}(\omega)}{V_{\text {in }}(\omega)}=\frac{R}{R+\frac{1}{i \omega C}}=\frac{i \omega R C}{1+i \omega R C}=\frac{i \frac{\omega}{\omega_{3 d B}}}{1+i \frac{\omega}{\omega_{3 d B}}}
$$

with $\omega_{3 d B}=\frac{1}{R C}$

RL filters

RL low-pass filter

RL high-pass filter

Filters chain

Technically next stage loads the previous and it is quite hard to calculate total transfer function. However if we use rule of 10 to avoid overloading the previous filter. Every next stage resistor $R_{i+1}>10 R_{i}$ we can approximate

$$
G_{t}(\omega) \approx G_{1}(\omega) G_{2}(\omega) G_{3}(\omega) \cdots G_{n}(\omega)
$$

Example band pass filter

$$
\begin{gathered}
G_{t}(\omega) \approx G_{1}(\omega) G_{2}(\omega) \\
G_{t}(\omega) \approx \frac{1}{1+i \frac{\omega}{\omega_{13 a B}}} \frac{i \frac{\omega}{\omega_{2_{3 a B}}}}{1+i \frac{\omega}{\omega_{2 a B}}}
\end{gathered}
$$

For $R_{1}=1 \mathrm{k} \Omega, R_{2}=100 \mathrm{k} \Omega$,
$C_{1}=C_{2}=.01 \mu F$

RLC band pass filter

Notch filter - Band stop filter

